Abstract
Two structurally unrelated chemicals, aflatoxin B1 and propane sultone, transformed human foreskin cells to a stage of anchorage-independent growth. Isolation from agar and repopulation in monolayer culture of these transformed cells was followed by transfection with a cDNA library, which resulted in cells that exhibited an altered epithelioid morphology. Chemically transformed/nontransfected cells and transfected normal cells did not undergo a significant morphological change. These epithelioid-appearing, transfected cells, when inoculated into nude mice, form progressively growing tumors. The tumors are histopathologically interpreted as carcinomas. All of the first generation tumors in the surrogate hosts exhibited characteristic rates of growth similar to those of transplants of spontaneous human tumors. In the second generation of tumor xenografts, the progressively growing tumors derived from the transfected cells exhibited a more rapid rate of growth. Southern analysis and reverse transcription PCR confirmed that a 1.3-kb genetic element was integrated into the genome and was actively being transcribed. Examination of the metaphase chromosomes in normal human cells revealed that the genetic element responsible for this conversion was located at site 31-32 of the q arm of chromosome 7. The DNA sequence of this 1.3-kb genetic element contains a coding region for 79 amino acids and a long 3'-untranslated region and appears to be identical to CATR1.3 isolated from tumors produced by methyl methanesulfonate-converted, nontransplantable human tumor cells.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bardi G., Sukhikh T., Pandis N., Fenger C., Kronborg O., Heim S. Karyotypic characterization of colorectal adenocarcinomas. Genes Chromosomes Cancer. 1995 Feb;12(2):97–109. doi: 10.1002/gcc.2870120204. [DOI] [PubMed] [Google Scholar]
- Bernstein R., Philip P., Ueshima Y. Fourth International Workshop on Chromosomes in Leukemia 1982: Abnormalities of chromosome 7 resulting in monosomy 7 or in deletion of the long arm (7q-): review of translocations, breakpoints, and associated abnormalities. Cancer Genet Cytogenet. 1984 Mar;11(3):300–303. doi: 10.1016/s0165-4608(84)80011-4. [DOI] [PubMed] [Google Scholar]
- Borek C. X-ray induced in vitro neoplastic transformation of human diploid cells. Nature. 1980 Feb 21;283(5749):776–778. doi: 10.1038/283776a0. [DOI] [PubMed] [Google Scholar]
- Chang S. E. In vitro transformation of human epithelial cells. Biochim Biophys Acta. 1986;823(3):161–194. doi: 10.1016/0304-419x(86)90001-6. [DOI] [PubMed] [Google Scholar]
- Frazier J. M., Tyson C. A., McCarthy C., McCormick J. J., Meyer D., Powis G., Ducat L. Potential use of human tissues for toxicity research and testing. Toxicol Appl Pharmacol. 1989 Mar 1;97(3):387–397. doi: 10.1016/0041-008x(89)90243-3. [DOI] [PubMed] [Google Scholar]
- Hurlin P. J., Maher V. M., McCormick J. J. Malignant transformation of human fibroblasts caused by expression of a transfected T24 HRAS oncogene. Proc Natl Acad Sci U S A. 1989 Jan;86(1):187–191. doi: 10.1073/pnas.86.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kakunaga T. Neoplastic transformation of human diploid fibroblast cells by chemical carcinogens. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1334–1338. doi: 10.1073/pnas.75.3.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurian P., Nesnow S., Milo G. E. Quantitative evaluation of the effects of human carcinogens and related chemicals on human foreskin fibroblasts. Cell Biol Toxicol. 1990 Apr;6(2):171–184. doi: 10.1007/BF00249592. [DOI] [PubMed] [Google Scholar]
- Lemieux N., Dutrillaux B., Viegas-Péquignot E. A simple method for simultaneous R- or G-banding and fluorescence in situ hybridization of small single-copy genes. Cytogenet Cell Genet. 1992;59(4):311–312. doi: 10.1159/000133277. [DOI] [PubMed] [Google Scholar]
- Li D., Noyes I., Shuler C., Milo G. E. Cloning and sequencing of CATR1.3, a human gene associated with tumorigenic conversion. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6409–6413. doi: 10.1073/pnas.92.14.6409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCormick J. J., Maher V. M. Towards an understanding of the malignant transformation of diploid human fibroblasts. Mutat Res. 1988 Jun;199(2):273–291. doi: 10.1016/0027-5107(88)90209-6. [DOI] [PubMed] [Google Scholar]
- McCormick J. J., Yang D. J., Maher V. M., Farber R. A., Neuman W., Peterson W. D., Jr, Pollack M. S. The HuT series of 'carcinogen-transformed' human fibroblast cell lines are derived from the human fibrosarcoma cell line 8387. Carcinogenesis. 1988 Nov;9(11):2073–2079. doi: 10.1093/carcin/9.11.2073. [DOI] [PubMed] [Google Scholar]
- Milo G. E., Casto B. C. Conditions for transformation of human fibroblast cells: an overview. Cancer Lett. 1986 Apr;31(1):1–13. doi: 10.1016/0304-3835(86)90161-8. [DOI] [PubMed] [Google Scholar]
- Milo G. E., Casto B., Ferrone S. Comparison of features of carcinogen-transformed human cells in vitro with sarcoma-derived cells. Mutat Res. 1988 Jun;199(2):387–398. doi: 10.1016/0027-5107(88)90216-3. [DOI] [PubMed] [Google Scholar]
- Milo G. E., Jr, DiPaolo J. A. Neoplastic transformation of human diploid cells in vitro after chemical carcinogen treatment. Nature. 1978 Sep 14;275(5676):130–132. doi: 10.1038/275130a0. [DOI] [PubMed] [Google Scholar]
- Milo G. E., Shuler C. F., Stoner G., Chen J. C. Conversion of premalignant human cells to tumorigenic cells by methylmethane sulfonate and methylnitronitrosoguanidine. Cell Biol Toxicol. 1992 Oct-Dec;8(4):193–205. doi: 10.1007/BF00156730. [DOI] [PubMed] [Google Scholar]
- Milo G. E., Shuler C., Kurian P., French B. T., Mannix D. G., Noyes I., Hollering J., Sital N., Schuller D., Trewyn R. W. Nontumorigenic squamous cell carcinoma line converted to tumorigenicity with methyl methanesulfonate without activation of HRAS or MYC. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1268–1272. doi: 10.1073/pnas.87.4.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Namba M., Nishitani K., Kimoto T. Carcinogenesis in tissue culture. 29: Neoplastic transformation of a normal human diploid cell strain, WI-38, with Co-60 gamma rays. Jpn J Exp Med. 1978 Aug;48(4):303–311. [PubMed] [Google Scholar]
- Popescu N. C., Amsbaugh S. C., Milo G., DiPaolo J. A. Chromosome alterations associated with in vitro exposure of human fibroblasts to chemical or physical carcinogens. Cancer Res. 1986 Sep;46(9):4720–4725. [PubMed] [Google Scholar]
- Richard F., Vogt N., Muleris M., Malfoy B., Dutrillaux B. Increased FISH efficiency using APC probes generated by direct incorporation of labeled nucleotides by PCR. Cytogenet Cell Genet. 1994;65(3):169–171. doi: 10.1159/000133624. [DOI] [PubMed] [Google Scholar]
- Sakai E., Rikimaru K., Ueda M., Matsumoto Y., Ishii N., Enomoto S., Yamamoto H., Tsuchida N. The p53 tumor-suppressor gene and ras oncogene mutations in oral squamous-cell carcinoma. Int J Cancer. 1992 Dec 2;52(6):867–872. doi: 10.1002/ijc.2910520606. [DOI] [PubMed] [Google Scholar]
- Shuler C., Kurian P., French B. T., Noyes I., Sital N., Hollering J., Trewyn R. W., Schuller D., Milo G. E. Noncorrelative c-myc and ras oncogene expression in squamous cell carcinoma cells with tumorigenic potential. Teratog Carcinog Mutagen. 1990;10(1):53–65. doi: 10.1002/tcm.1770100107. [DOI] [PubMed] [Google Scholar]
- Silinskas K. C., Kateley S. A., Tower J. E., Maher V. M., McCormick J. J. Induction of anchorage-independent growth in human fibroblasts by propane sultone. Cancer Res. 1981 May;41(5):1620–1627. [PubMed] [Google Scholar]
- Sreekantaiah C., Davis J. R., Sandberg A. A. Chromosomal abnormalities in leiomyosarcomas. Am J Pathol. 1993 Jan;142(1):293–305. [PMC free article] [PubMed] [Google Scholar]
- Sutherland B. M., Cimino J. S., Delihas N., Shih A. G., Oliver R. P. Ultraviolet light-induced transformation of human cells to anchorage-independent growth. Cancer Res. 1980 Jun;40(6):1934–1939. [PubMed] [Google Scholar]
- Zimmerman R. J., Little J. B. Starvation for arginine and glutamine sensitizes human diploid cells to the transforming effects of N-acetoxy-2-acetylaminofluorene. Carcinogenesis. 1981;2(12):1303–1310. doi: 10.1093/carcin/2.12.1303. [DOI] [PubMed] [Google Scholar]