Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Dec;81(24):7965–7969. doi: 10.1073/pnas.81.24.7965

Substances originating from the optic nerve of neonatal rabbit induce regeneration-associated response in the injured optic nerve of adult rabbit.

M Hadani, A Harel, A Solomon, M Belkin, V Lavie, M Schwartz
PMCID: PMC392274  PMID: 6595671

Abstract

We have recently shown that cell bodies of an injured optic nerve of adult rabbit can be induced to express regeneration-associated response by external signals derived from nonneuronal cells of regenerating nerves of lower vertebrates. In this study it is shown that even substances derived from a nonregenerating mammalian system also can trigger such a regenerative response. Thus, substances derived from intact nerves of neonatal rabbits and of adult rabbits, to a lesser extent, were active in triggering a regeneration-associated response, whereas substances derived from injured nerves of adult rabbit were not. However, if subsequent to the injury the nerve was implanted with silicone tube containing medium conditioned by neonatal optic nerves, the substances derived from the implanted injured nerve were active. Thus, it appears that the ability of a periaxonal environment to provide triggering substances correlates with axonal growth. Therefore, we named these substances "growth-associated triggering factors" (GATFs). It is suggested that mammalian cells are unable to express a regenerative response after an injury due to the failure of their nonneuronal cells to produce regeneration-triggering substances. This disability may be circumvented by an appropriate implantation procedure.

Full text

PDF
7965

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benowitz L. I., Shashoua V. E., Yoon M. G. Specific changes in rapidly transported proteins during regeneration of the goldfish optic nerve. J Neurosci. 1981 Mar;1(3):300–307. doi: 10.1523/JNEUROSCI.01-03-00300.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benowitz L. I., Yoon M. G., Lewis E. R. Transported proteins in the regenerating optic nerve: regulation by interactions with the optic tectum. Science. 1983 Oct 14;222(4620):185–188. doi: 10.1126/science.6194562. [DOI] [PubMed] [Google Scholar]
  3. CLEMENTE C. D. REGENERATION IN THE VERTEBRATE CENTRAL NERVOUS SYSTEM. Int Rev Neurobiol. 1964;6:257–301. doi: 10.1016/s0074-7742(08)60771-0. [DOI] [PubMed] [Google Scholar]
  4. David S., Aguayo A. J. Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science. 1981 Nov 20;214(4523):931–933. doi: 10.1126/science.6171034. [DOI] [PubMed] [Google Scholar]
  5. Giulian D., Des Ruisseux H., Cowburn D. Biosynthesis and intra-axonal transport of proteins during neuronal regeneration. J Biol Chem. 1980 Jul 10;255(13):6494–6501. [PubMed] [Google Scholar]
  6. Heacock A. M., Agranoff B. W. Enhanced labeling of a retinal protein during regeneration of optic nerve in goldfish. Proc Natl Acad Sci U S A. 1976 Mar;73(3):828–832. doi: 10.1073/pnas.73.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Heacock A. M., Agranoff B. W. Protein synthesis and transport in the regenerating goldfish visual system. Neurochem Res. 1982 Jun;7(6):771–788. doi: 10.1007/BF00965529. [DOI] [PubMed] [Google Scholar]
  8. Kao C. C., Chang L. W., Bloodworth J. M., Jr Axonal regeneration across transected mammalian spinal cords: an electron microscopic study of delayed microsurgical nerve grafting. Exp Neurol. 1977 Mar;54(3):591–615. doi: 10.1016/0014-4886(77)90259-x. [DOI] [PubMed] [Google Scholar]
  9. Kiernan J. A. Hypotheses concerned with axonal regeneration in the mammalian nervous system. Biol Rev Camb Philos Soc. 1979 May;54(2):155–197. doi: 10.1111/j.1469-185x.1979.tb00871.x. [DOI] [PubMed] [Google Scholar]
  10. Landreth G. E., Agranoff B. W. Explant culture of adult goldfish retina: effect of prior optic nerve crush. Brain Res. 1976 Dec 17;118(2):299–303. doi: 10.1016/0006-8993(76)90714-9. [DOI] [PubMed] [Google Scholar]
  11. Lundborg G., Longo F. M., Varon S. Nerve regeneration model and trophic factors in vivo. Brain Res. 1982 Jan 28;232(1):157–161. doi: 10.1016/0006-8993(82)90618-7. [DOI] [PubMed] [Google Scholar]
  12. Neuman D., Yerushalmi A., Schwartz M. Inhibition of non-neuronal cell proliferation in the goldfish visual pathway affects the regenerative capacity of the retina. Brain Res. 1983 Aug 8;272(2):237–245. doi: 10.1016/0006-8993(83)90569-3. [DOI] [PubMed] [Google Scholar]
  13. Nieto-Sampedro M., Lewis E. R., Cotman C. W., Manthorpe M., Skaper S. D., Barbin G., Longo F. M., Varon S. Brain injury causes a time-dependent increase in neuronotrophic activity at the lesion site. Science. 1982 Aug 27;217(4562):860–861. doi: 10.1126/science.7100931. [DOI] [PubMed] [Google Scholar]
  14. Rachailovich I., Schwartz M. Molecular events associated with increased regenerative capacity of the goldfish retinal ganglion cells following X-irradiation: decreased level of axonal growth inhibitors. Brain Res. 1984 Jul 23;306(1-2):149–155. doi: 10.1016/0006-8993(84)90363-9. [DOI] [PubMed] [Google Scholar]
  15. Richardson P. M., Issa V. M., Shemie S. Regeneration and retrograde degeneration of axons in the rat optic nerve. J Neurocytol. 1982 Dec;11(6):949–966. doi: 10.1007/BF01148310. [DOI] [PubMed] [Google Scholar]
  16. Richardson P. M., McGuinness U. M., Aguayo A. J. Axons from CNS neurons regenerate into PNS grafts. Nature. 1980 Mar 20;284(5753):264–265. doi: 10.1038/284264a0. [DOI] [PubMed] [Google Scholar]
  17. Salzer J. L., Bunge R. P., Glaser L. Studies of Schwann cell proliferation. III. Evidence for the surface localization of the neurite mitogen. J Cell Biol. 1980 Mar;84(3):767–778. doi: 10.1083/jcb.84.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Salzer J. L., Bunge R. P. Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury. J Cell Biol. 1980 Mar;84(3):739–752. doi: 10.1083/jcb.84.3.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Salzer J. L., Williams A. K., Glaser L., Bunge R. P. Studies of Schwann cell proliferation. II. Characterization of the stimulation and specificity of the response to a neurite membrane fraction. J Cell Biol. 1980 Mar;84(3):753–766. doi: 10.1083/jcb.84.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schwartz M., Mizrachi Y., Eshhar N. Factor(s) from goldfish brain induce neuritic outgrowth from explanted regenerating retinas. Brain Res. 1982 Jan;255(1):29–35. doi: 10.1016/0165-3806(82)90073-6. [DOI] [PubMed] [Google Scholar]
  21. Schwartz M., Mizrachi Y., Kimhi Y. Regenerating goldfish retinal explants: induction and maintenance of neurites by conditioned medium from cells originated in the nervous system. Brain Res. 1982 Jan;255(1):21–28. doi: 10.1016/0165-3806(82)90072-4. [DOI] [PubMed] [Google Scholar]
  22. Skene J. H., Shooter E. M. Denervated sheath cells secrete a new protein after nerve injury. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4169–4173. doi: 10.1073/pnas.80.13.4169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Skene J. H., Willard M. Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems. J Cell Biol. 1981 Apr;89(1):96–103. doi: 10.1083/jcb.89.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Skene J. H., Willard M. Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells. J Cell Biol. 1981 Apr;89(1):86–95. doi: 10.1083/jcb.89.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES