Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 May 28;93(11):5247–5252. doi: 10.1073/pnas.93.11.5247

Long-term culture of lymphohematopoietic stem cells.

R Palacios 1, C Bucana 1, X Xie 1
PMCID: PMC39230  PMID: 8643561

Abstract

Pluripotent hematopoietic stem cells (PHSCs) show self-renewal and give rise to all blood cell types. The extremely low number of these cells in primary hematopoietic organs and the lack of culture systems that support proliferation of undifferentiated PHSCs have precluded the study of both the biology of these cells and their clinical application. We describe here cell lines and clones derived from PHSCs that were established from hematopoietic cells from the fetal liver or bone marrow of normal and p53-deficient mice with a combination of four growth factors. Most cell lines were Sca-1+, c-Kit+, PgP-1+, HSA+, and Lin- (B-220-, Joro 75-, 8C5-, F4/80-, CD4-, CD8-, CD3-, IgM-, and TER 119-negative) and expressed three new surface markers: Joro 177, Joro 184, and Joro 96. They did not synthesize RNA transcripts for several genes expressed at early stages of lymphocyte and myeloid/erythroid cell development. The clones were able to generate lymphoid, myeloid, and erythroid hematopoietic cells and to reconstitute the hematopoietic system of irradiated mice for a long time. The availability of lymphohematopoietic stem cell lines should facilitate the analysis of the molecular mechanisms that control self-renewal and differentiation and the development of efficient protocols for somatic gene therapy.

Full text

PDF
5247

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews R. G., Bryant E. M., Bartelmez S. H., Muirhead D. Y., Knitter G. H., Bensinger W., Strong D. M., Bernstein I. D. CD34+ marrow cells, devoid of T and B lymphocytes, reconstitute stable lymphopoiesis and myelopoiesis in lethally irradiated allogeneic baboons. Blood. 1992 Oct 1;80(7):1693–1701. [PubMed] [Google Scholar]
  2. Baum C. M., Weissman I. L., Tsukamoto A. S., Buckle A. M., Peault B. Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2804–2808. doi: 10.1073/pnas.89.7.2804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cross M. A., Heyworth C. M., Murrell A. M., Bockamp E. O., Dexter T. M., Green A. R. Expression of lineage restricted transcription factors precedes lineage specific differentiation in a multipotent haemopoietic progenitor cell line. Oncogene. 1994 Oct;9(10):3013–3016. [PubMed] [Google Scholar]
  4. Donehower L. A., Harvey M., Slagle B. L., McArthur M. J., Montgomery C. A., Jr, Butel J. S., Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992 Mar 19;356(6366):215–221. doi: 10.1038/356215a0. [DOI] [PubMed] [Google Scholar]
  5. Fletcher F. A., Moore K. A., Ashkenazi M., De Vries P., Overbeek P. A., Williams D. E., Belmont J. W. Leukemia inhibitory factor improves survival of retroviral vector-infected hematopoietic stem cells in vitro, allowing efficient long-term expression of vector-encoded human adenosine deaminase in vivo. J Exp Med. 1991 Oct 1;174(4):837–845. doi: 10.1084/jem.174.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harrison D. E., Zhong R. K. The same exhaustible multilineage precursor produces both myeloid and lymphoid cells as early as 3-4 weeks after marrow transplantation. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10134–10138. doi: 10.1073/pnas.89.21.10134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jones R. J., Wagner J. E., Celano P., Zicha M. S., Sharkis S. J. Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature. 1990 Sep 13;347(6289):188–189. doi: 10.1038/347188a0. [DOI] [PubMed] [Google Scholar]
  8. Jordan C. T., McKearn J. P., Lemischka I. R. Cellular and developmental properties of fetal hematopoietic stem cells. Cell. 1990 Jun 15;61(6):953–963. doi: 10.1016/0092-8674(90)90061-i. [DOI] [PubMed] [Google Scholar]
  9. Karasuyama H., Melchers F. Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors. Eur J Immunol. 1988 Jan;18(1):97–104. doi: 10.1002/eji.1830180115. [DOI] [PubMed] [Google Scholar]
  10. Kiefer F., Wagner E. F., Keller G. Fractionation of mouse bone marrow by adherence separates primitive hematopoietic stem cells from in vitro colony-forming cells and spleen colony-forming cells. Blood. 1991 Nov 15;78(10):2577–2582. [PubMed] [Google Scholar]
  11. Kuerbitz S. J., Plunkett B. S., Walsh W. V., Kastan M. B. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7491–7495. doi: 10.1073/pnas.89.16.7491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leary A. G., Zeng H. Q., Clark S. C., Ogawa M. Growth factor requirements for survival in G0 and entry into the cell cycle of primitive human hemopoietic progenitors. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4013–4017. doi: 10.1073/pnas.89.9.4013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Li C. L., Johnson G. R. Rhodamine123 reveals heterogeneity within murine Lin-, Sca-1+ hemopoietic stem cells. J Exp Med. 1992 Jun 1;175(6):1443–1447. doi: 10.1084/jem.175.6.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lyman S. D., James L., Vanden Bos T., de Vries P., Brasel K., Gliniak B., Hollingsworth L. T., Picha K. S., McKenna H. J., Splett R. R. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell. 1993 Dec 17;75(6):1157–1167. doi: 10.1016/0092-8674(93)90325-k. [DOI] [PubMed] [Google Scholar]
  15. Migliaccio G., Migliaccio A. R., Valinsky J., Langley K., Zsebo K., Visser J. W., Adamson J. W. Stem cell factor induces proliferation and differentiation of highly enriched murine hematopoietic cells. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7420–7424. doi: 10.1073/pnas.88.16.7420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Palacios R., Golunski E., Samaridis J. In vitro generation of hematopoietic stem cells from an embryonic stem cell line. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7530–7534. doi: 10.1073/pnas.92.16.7530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Palacios R., Samaridis J. Bone marrow clones representing an intermediate stage of development between hematopoietic stem cells and pro-T-lymphocyte or pro-B-lymphocyte progenitors. Blood. 1993 Mar 1;81(5):1222–1238. [PubMed] [Google Scholar]
  18. Palacios R., Samaridis J. Fetal liver pro-B and pre-B lymphocyte clones: expression of lymphoid-specific genes, surface markers, growth requirements, colonization of the bone marrow, and generation of B lymphocytes in vivo and in vitro. Mol Cell Biol. 1992 Feb;12(2):518–530. doi: 10.1128/mcb.12.2.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Palacios R., Samaridis J., Thorpe D., Leu T. Identification and characterization of pro-T lymphocytes and lineage-uncommitted lymphocyte precursors from mice with three novel surface markers. J Exp Med. 1990 Jul 1;172(1):219–230. doi: 10.1084/jem.172.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Phillips R. A., Spaner D. E. The scid mouse: mutation in a DNA repair gene creates recipients useful for studies on stem cells, lymphocyte development and graft-versus-host disease. Immunol Rev. 1991 Dec;124:63–74. doi: 10.1111/j.1600-065x.1991.tb00616.x. [DOI] [PubMed] [Google Scholar]
  21. Samaridis J., Casorati G., Traunecker A., Iglesias A., Gutierrez J. C., Müller U., Palacios R. Development of lymphocytes in interleukin 7-transgenic mice. Eur J Immunol. 1991 Feb;21(2):453–460. doi: 10.1002/eji.1830210230. [DOI] [PubMed] [Google Scholar]
  22. Shinkai Y., Rathbun G., Lam K. P., Oltz E. M., Stewart V., Mendelsohn M., Charron J., Datta M., Young F., Stall A. M. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992 Mar 6;68(5):855–867. doi: 10.1016/0092-8674(92)90029-c. [DOI] [PubMed] [Google Scholar]
  23. Spangrude G. J., Brooks D. M., Tumas D. B. Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood. 1995 Feb 15;85(4):1006–1016. [PubMed] [Google Scholar]
  24. Spangrude G. J., Heimfeld S., Weissman I. L. Purification and characterization of mouse hematopoietic stem cells. Science. 1988 Jul 1;241(4861):58–62. doi: 10.1126/science.2898810. [DOI] [PubMed] [Google Scholar]
  25. Spangrude G. J., Scollay R. A simplified method for enrichment of mouse hematopoietic stem cells. Exp Hematol. 1990 Sep;18(8):920–926. [PubMed] [Google Scholar]
  26. TILL J. E., McCULLOCH E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213–222. [PubMed] [Google Scholar]
  27. Uchida N., Fleming W. H., Alpern E. J., Weissman I. L. Heterogeneity of hematopoietic stem cells. Curr Opin Immunol. 1993 Apr;5(2):177–184. doi: 10.1016/0952-7915(93)90002-a. [DOI] [PubMed] [Google Scholar]
  28. Visser J. W., Van Bekkum D. W. Purification of pluripotent hemopoietic stem cells: past and present. Exp Hematol. 1990 Mar;18(3):248–256. [PubMed] [Google Scholar]
  29. Yonish-Rouach E., Resnitzky D., Lotem J., Sachs L., Kimchi A., Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature. 1991 Jul 25;352(6333):345–347. doi: 10.1038/352345a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES