Abstract
Escherichia coli phage N4 transcription is resistant to rifampicin, an inhibitor of the host RNA polymerase, even when the drug is added prior to infection. A rifampicin-resistant RNA polymerase has been detected in disrupted N4 virions. This enzyme shows a requirement for the four ribonucleoside 5'-triphosphates and exogenous denatured DNA. With denatured N4 DNA, the preferred template, transcription is asymmetric. The virion RNA polymerase apparently is necessary for phage development because a conditional lethal N4 mutant shows temperature-sensitive RNA synthesis in vivo as well as a temperature-sensitive RNA polymerase in disrupted virions.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bolle A., Epstein R. H., Salser W., Geiduschek E. P. Transcription during bacteriophage T4 development: synthesis and relative stability of early and late RNA. J Mol Biol. 1968 Feb 14;31(3):325–348. doi: 10.1016/0022-2836(68)90413-0. [DOI] [PubMed] [Google Scholar]
- Brody E. N., Geiduschek E. P. Transcription of the bacteriophage T4 template. Detailed comparison of in vitro and in vivo transcripts. Biochemistry. 1970 Mar 17;9(6):1300–1309. doi: 10.1021/bi00808a002. [DOI] [PubMed] [Google Scholar]
- Chamberlin M., McGrath J., Waskell L. New RNA polymerase from Escherichia coli infected with bacteriophage T7. Nature. 1970 Oct 17;228(5268):227–231. doi: 10.1038/228227a0. [DOI] [PubMed] [Google Scholar]
- Chamberlin M., Ring J. Characterization of T7-specific ribonucleic acid polymerase. 1. General properties of the enzymatic reaction and the template specificity of the enzyme. J Biol Chem. 1973 Mar 25;248(6):2235–2244. [PubMed] [Google Scholar]
- Clark S., Losick R., Pero J. New RNA polymerase from Bacillus subtilis infected with phage PBS2. Nature. 1974 Nov 1;252(5478):21–24. doi: 10.1038/252021a0. [DOI] [PubMed] [Google Scholar]
- Dunn J. J., Bautz F. A., Bautz E. K. Different template specificities of phage T3 and T7 RNA polymerases. Nat New Biol. 1971 Mar 17;230(11):94–96. doi: 10.1038/newbio230094a0. [DOI] [PubMed] [Google Scholar]
- Geiduschek E. P., Sklar J. Continual requirement for a host RNA polymerase component in a bacteriophage development. Nature. 1969 Mar 1;221(5183):833–836. doi: 10.1038/221833a0. [DOI] [PubMed] [Google Scholar]
- Haselkorn R., Vogel M., Brown R. D. Conservation of the rifamycin sensitivity of transcription during T4 development. Nature. 1969 Mar 1;221(5183):836–838. doi: 10.1038/221836a0. [DOI] [PubMed] [Google Scholar]
- Holland M., Whiteley H. R. RNA polymerase from Bacillus amyloliquefaciens infected with phi29 bacteriophage. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2234–2237. doi: 10.1073/pnas.70.8.2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maitra U. Induction of a new RNA polymerase in Escherichia coli infected with bacteriophage T3. Biochem Biophys Res Commun. 1971 Apr 16;43(2):443–450. doi: 10.1016/0006-291x(71)90773-x. [DOI] [PubMed] [Google Scholar]
- Pesce A., Casoli C., Schito G. C. Rifampicin-resistant RNA polymerase and NAD transferase activities in coliphage N4 virions. Nature. 1976 Jul 29;262(5567):412–414. doi: 10.1038/262412a0. [DOI] [PubMed] [Google Scholar]
- Price A. R., Frabotta M. Resistance of bacteriophage PBS2 infection to rifampicin, an inhibitor of Bacillus subtilis RNA synthesis. Biochem Biophys Res Commun. 1972 Sep 26;48(6):1578–1585. doi: 10.1016/0006-291x(72)90894-7. [DOI] [PubMed] [Google Scholar]
- Rothman-Denes L. B., Haselkorn R., Schito G. C. Selective shutoff of catabolite-sensitive host syntheses by bacroxyurea pharmaco mutation genes coliphages growth ł virus replication escherichia coli growth ł lysogeny crosses genetic coliteriophage N4. Virology. 1972 Oct;50(1):95–102. doi: 10.1016/0042-6822(72)90349-2. [DOI] [PubMed] [Google Scholar]
- Rothman-Denes L. B., Schito G. C. Novel transcribing activities in N4-infected Escherichia coli. Virology. 1974 Jul;60(1):65–72. doi: 10.1016/0042-6822(74)90366-3. [DOI] [PubMed] [Google Scholar]
- Schito G. C., Rialdi G., Pesce A. Biophysical properties of N4 coliphage. Biochim Biophys Acta. 1966 Dec 21;129(3):482–490. doi: 10.1016/0005-2787(66)90063-3. [DOI] [PubMed] [Google Scholar]
- Schito G. C. The genetics and physiology of coliphage N4. Virology. 1973 Sep;55(1):254–265. doi: 10.1016/s0042-6822(73)81028-1. [DOI] [PubMed] [Google Scholar]
- Spiegelman G. B., Whiteley H. R. Purification of ribonucleic acid polymerase from SP82-infected Bacillus subtilis. J Biol Chem. 1974 Mar 10;249(5):1476–1482. [PubMed] [Google Scholar]
- Summers W. C., Siegel R. B. Control of template specificity of E. coli RNA polymerase by a phage-coded protein. Nature. 1969 Sep 13;223(5211):1111–1113. doi: 10.1038/2231111a0. [DOI] [PubMed] [Google Scholar]
- Takeda Y., Oyama Y., Nakajima K., Yura T. Role of host RNA polymerase for lambda phage development. Biochem Biophys Res Commun. 1969 Aug 15;36(4):533–538. doi: 10.1016/0006-291x(69)90337-4. [DOI] [PubMed] [Google Scholar]
- Towle H. C., Jolly J. F., Boezi J. A. Purification and characterization of bacteriophage gh-I-induced deoxyribonucleic acid-dependent ribonucleic acid polymerase from Pseudomonas putida. J Biol Chem. 1975 Mar 10;250(5):1723–1733. [PubMed] [Google Scholar]