Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Feb;74(2):520–523. doi: 10.1073/pnas.74.2.520

Virion-associated RNA polymerase required for bacteriophage N4 development.

S C Falco, K V Laan, L B Rothman-Denes
PMCID: PMC392321  PMID: 322130

Abstract

Escherichia coli phage N4 transcription is resistant to rifampicin, an inhibitor of the host RNA polymerase, even when the drug is added prior to infection. A rifampicin-resistant RNA polymerase has been detected in disrupted N4 virions. This enzyme shows a requirement for the four ribonucleoside 5'-triphosphates and exogenous denatured DNA. With denatured N4 DNA, the preferred template, transcription is asymmetric. The virion RNA polymerase apparently is necessary for phage development because a conditional lethal N4 mutant shows temperature-sensitive RNA synthesis in vivo as well as a temperature-sensitive RNA polymerase in disrupted virions.

Full text

PDF
520

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolle A., Epstein R. H., Salser W., Geiduschek E. P. Transcription during bacteriophage T4 development: synthesis and relative stability of early and late RNA. J Mol Biol. 1968 Feb 14;31(3):325–348. doi: 10.1016/0022-2836(68)90413-0. [DOI] [PubMed] [Google Scholar]
  2. Brody E. N., Geiduschek E. P. Transcription of the bacteriophage T4 template. Detailed comparison of in vitro and in vivo transcripts. Biochemistry. 1970 Mar 17;9(6):1300–1309. doi: 10.1021/bi00808a002. [DOI] [PubMed] [Google Scholar]
  3. Chamberlin M., McGrath J., Waskell L. New RNA polymerase from Escherichia coli infected with bacteriophage T7. Nature. 1970 Oct 17;228(5268):227–231. doi: 10.1038/228227a0. [DOI] [PubMed] [Google Scholar]
  4. Chamberlin M., Ring J. Characterization of T7-specific ribonucleic acid polymerase. 1. General properties of the enzymatic reaction and the template specificity of the enzyme. J Biol Chem. 1973 Mar 25;248(6):2235–2244. [PubMed] [Google Scholar]
  5. Clark S., Losick R., Pero J. New RNA polymerase from Bacillus subtilis infected with phage PBS2. Nature. 1974 Nov 1;252(5478):21–24. doi: 10.1038/252021a0. [DOI] [PubMed] [Google Scholar]
  6. Dunn J. J., Bautz F. A., Bautz E. K. Different template specificities of phage T3 and T7 RNA polymerases. Nat New Biol. 1971 Mar 17;230(11):94–96. doi: 10.1038/newbio230094a0. [DOI] [PubMed] [Google Scholar]
  7. Geiduschek E. P., Sklar J. Continual requirement for a host RNA polymerase component in a bacteriophage development. Nature. 1969 Mar 1;221(5183):833–836. doi: 10.1038/221833a0. [DOI] [PubMed] [Google Scholar]
  8. Haselkorn R., Vogel M., Brown R. D. Conservation of the rifamycin sensitivity of transcription during T4 development. Nature. 1969 Mar 1;221(5183):836–838. doi: 10.1038/221836a0. [DOI] [PubMed] [Google Scholar]
  9. Holland M., Whiteley H. R. RNA polymerase from Bacillus amyloliquefaciens infected with phi29 bacteriophage. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2234–2237. doi: 10.1073/pnas.70.8.2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Maitra U. Induction of a new RNA polymerase in Escherichia coli infected with bacteriophage T3. Biochem Biophys Res Commun. 1971 Apr 16;43(2):443–450. doi: 10.1016/0006-291x(71)90773-x. [DOI] [PubMed] [Google Scholar]
  11. Pesce A., Casoli C., Schito G. C. Rifampicin-resistant RNA polymerase and NAD transferase activities in coliphage N4 virions. Nature. 1976 Jul 29;262(5567):412–414. doi: 10.1038/262412a0. [DOI] [PubMed] [Google Scholar]
  12. Price A. R., Frabotta M. Resistance of bacteriophage PBS2 infection to rifampicin, an inhibitor of Bacillus subtilis RNA synthesis. Biochem Biophys Res Commun. 1972 Sep 26;48(6):1578–1585. doi: 10.1016/0006-291x(72)90894-7. [DOI] [PubMed] [Google Scholar]
  13. Rothman-Denes L. B., Haselkorn R., Schito G. C. Selective shutoff of catabolite-sensitive host syntheses by bacroxyurea pharmaco mutation genes coliphages growth ł virus replication escherichia coli growth ł lysogeny crosses genetic coliteriophage N4. Virology. 1972 Oct;50(1):95–102. doi: 10.1016/0042-6822(72)90349-2. [DOI] [PubMed] [Google Scholar]
  14. Rothman-Denes L. B., Schito G. C. Novel transcribing activities in N4-infected Escherichia coli. Virology. 1974 Jul;60(1):65–72. doi: 10.1016/0042-6822(74)90366-3. [DOI] [PubMed] [Google Scholar]
  15. Schito G. C., Rialdi G., Pesce A. Biophysical properties of N4 coliphage. Biochim Biophys Acta. 1966 Dec 21;129(3):482–490. doi: 10.1016/0005-2787(66)90063-3. [DOI] [PubMed] [Google Scholar]
  16. Schito G. C. The genetics and physiology of coliphage N4. Virology. 1973 Sep;55(1):254–265. doi: 10.1016/s0042-6822(73)81028-1. [DOI] [PubMed] [Google Scholar]
  17. Spiegelman G. B., Whiteley H. R. Purification of ribonucleic acid polymerase from SP82-infected Bacillus subtilis. J Biol Chem. 1974 Mar 10;249(5):1476–1482. [PubMed] [Google Scholar]
  18. Summers W. C., Siegel R. B. Control of template specificity of E. coli RNA polymerase by a phage-coded protein. Nature. 1969 Sep 13;223(5211):1111–1113. doi: 10.1038/2231111a0. [DOI] [PubMed] [Google Scholar]
  19. Takeda Y., Oyama Y., Nakajima K., Yura T. Role of host RNA polymerase for lambda phage development. Biochem Biophys Res Commun. 1969 Aug 15;36(4):533–538. doi: 10.1016/0006-291x(69)90337-4. [DOI] [PubMed] [Google Scholar]
  20. Towle H. C., Jolly J. F., Boezi J. A. Purification and characterization of bacteriophage gh-I-induced deoxyribonucleic acid-dependent ribonucleic acid polymerase from Pseudomonas putida. J Biol Chem. 1975 Mar 10;250(5):1723–1733. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES