Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Feb;74(2):547–551. doi: 10.1073/pnas.74.2.547

Identification of the iron-sulfur center in trimethylamine dehydrogenase.

C L Hill, D J Steenkamp, R H Holm, T P Singer
PMCID: PMC392327  PMID: 265519

Abstract

Trimethylamine dehydrogenase [trimethylamine:(acceptor) oxidoreductase (demethylating), EC 1.5.99.7] from a facultative methylotroph bacterium has a molecular weight of 147,000 and contains two types of prosthetic groups, one a covalently bound organic chromophore of uncertain structure and the other containing iron and labile sulfur (S*). The structure of the Fe-S* center has been investigated by reactions of the enzyme with sodium mersalyl, o-xylyl-alpha,alpha'-dithiol, and p-methoxybenzenethiol in a 4:1 vol/vol hexamethylphosphoramide/water reaction medium, which destabilizes tertiary structure. Mersalyl treatment results in reduction of visible absorbance consistent with the presence of a 4-Fe center of the ferredoxin type. Reaction with thiols effects partial bleaching of the organic chromophore, as established by separate studies of a detached chromophore peptide, and results in removal (extrusion) of the core unit of the Fe-s* center in the form of the complexes [Fe4S*4(S2-o-xylyl)2]n2n- and [Fe4S*4(SC6H4OMe)4]2-, which were identified by absorption spectra. These results, in conjunction with control extrusion reactions of oxidized ferredoxins from spinach and Clostridium pasteurianum, establish that trimethylamine dehydrogenase contains one Fe4S*4 core unit most probably present as a ferredoxin-type, cysteinate-ligated cluster [Fe4S*4(S-Cys)4].

Full text

PDF
547

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aparicio P. J., Knaff D. B., Malkin R. The role of an iron-sulfur center and siroheme in spinach nitrite reductase. Arch Biochem Biophys. 1975 Jul;169(1):102–107. doi: 10.1016/0003-9861(75)90321-5. [DOI] [PubMed] [Google Scholar]
  2. Averill B. A., Herskovitz T., Holm R. H., Ibers J. A. Synthetic analogs of the active sites of iron-sulfur proteins. II. Synthesis and structure of the tetra(mercapto-m 3 -sulfido-iron) clusters, (Fe 4 S 4 (SR) 4 ) 2- . J Am Chem Soc. 1973 May 30;95(11):3523–3534. doi: 10.1021/ja00792a013. [DOI] [PubMed] [Google Scholar]
  3. Beinert H., Ackrell B. A., Kearney E. B., Singer T. P. Iron-sulfur components of succinate dehydrogenase: stoichiometry and kinetic behavior in activated preparations. Eur J Biochem. 1975 May;54(1):185–194. doi: 10.1111/j.1432-1033.1975.tb04128.x. [DOI] [PubMed] [Google Scholar]
  4. Colby J., Zatman L. J. Purification and properties of the trimethylamine dehydrogenase of bacterium 4B6. Biochem J. 1974 Dec;143(3):555–567. doi: 10.1042/bj1430555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DePamphilis B. V., Averill B. A., Herskovitz T., Que L., Jr, Holm R. H. Synthetic analogs of the active sites of iron-sulfur proteins. VI. Spectral and redox characteristics of the tetranuclear clusters (Fe4S4(SR)4).2-. J Am Chem Soc. 1974 Jun 26;96(13):4159–4167. doi: 10.1021/ja00820a017. [DOI] [PubMed] [Google Scholar]
  6. Erbes D. L., Burris R. H., Orme-Johnson W. H. On the iron-sulfur cluster in hydrogenase from Clostridium pasteurianum W5. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4795–4799. doi: 10.1073/pnas.72.12.4795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Howard J. B., Lorsbach T., Que L. Iron-sulfur clusters and cysteine distribution in a ferredoxin from Azotobacter vinelandii. Biochem Biophys Res Commun. 1976 May 17;70(2):582–588. doi: 10.1016/0006-291x(76)91087-1. [DOI] [PubMed] [Google Scholar]
  8. Jensen L. H. X-ray structural studies of ferredoxin and related electron carriers. Annu Rev Biochem. 1974;43(0):461–507. doi: 10.1146/annurev.bi.43.070174.002333. [DOI] [PubMed] [Google Scholar]
  9. LOVENBERG W., BUCHANAN B. B., RABINOWITZ J. C. STUDIES ON THE CHEMICAL NATURE OF CLOSTRIDIAL FERREDOXIN. J Biol Chem. 1963 Dec;238:3899–3913. [PubMed] [Google Scholar]
  10. Ohnishi T., Lim J., Winter D. B., King T. E. Thermodynamic and EPR characteristics of a HiPIP-type iron-sulfur center in the succinate dehydrogenase of the respiratory chain. J Biol Chem. 1976 Apr 10;251(7):2105–2109. [PubMed] [Google Scholar]
  11. Orme-Johnson W. H. Iron-sulfur proteins: structure and function. Annu Rev Biochem. 1973;42(0):159–204. doi: 10.1146/annurev.bi.42.070173.001111. [DOI] [PubMed] [Google Scholar]
  12. Que L., Jr, Bobrik M. A., Ibers J. A., Holm R. H. Synthetic analogs of the active sites of iron-sulfur proteins. VII. Ligand substitution reactions of the tetranuclear clusters (Fe4S4(SR)4)2- and the structure of ((CH3)4N)2(Fe4S4(SC6H5)4). J Am Chem Soc. 1974 Jun 26;96(13):4168–4178. doi: 10.1021/ja00820a018. [DOI] [PubMed] [Google Scholar]
  13. Que L., Jr, Holm R. H., Mortenson L. E. Letter: Extrusion of Fe2S2 and Fe4S4 cores from the active sites of ferredoxin proteins. J Am Chem Soc. 1975 Jan 22;97(2):463–464. doi: 10.1021/ja00835a064. [DOI] [PubMed] [Google Scholar]
  14. Siegel L. M., Davis P. S. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. IV. The Escherichia coli hemoflavoprotein: subunit structure and dissociation into hemoprotein and flavoprotein components. J Biol Chem. 1974 Mar 10;249(5):1587–1598. [PubMed] [Google Scholar]
  15. Steenkamp D. J., Mallinson J. Trimethylamine dehydrogenase from a methylotrophic bacterium. I. Isolation and steady-state kinetics. Biochim Biophys Acta. 1976 May 13;429(3):705–719. doi: 10.1016/0005-2744(76)90319-3. [DOI] [PubMed] [Google Scholar]
  16. Steenkamp D. J., Singer T. P. On the presence of a novel covalently bound oxidation-reduction cofactor, iron and labile sulfur in trimethylamine dehydrogenase. Biochem Biophys Res Commun. 1976 Aug 23;71(4):1289–1295. doi: 10.1016/0006-291x(76)90794-4. [DOI] [PubMed] [Google Scholar]
  17. Van de Bogart M., Beinert H. Micro methods for the quantitative determination of iron and copper in biological material. Anal Biochem. 1967 Aug;20(2):325–334. doi: 10.1016/0003-2697(67)90038-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES