Abstract
Administration of human chorionic gonadotropin (hCG) to male rats was followed by dose-related changes in luteinizing hormone (LH) receptors in the testis. After treatment with a low dose of hCG (10international units), the number of LH receptors increased slightly over the first 24 hr, then fell to about 30% of the control value. These changes occurred with occupancy of only 8% of the available receptors, and were initially accompanied by increased basal testosterone production in vitro with no change in basal 3'5'-cyclic AMP production. During stimulation with hCG in vitro, such testes showed a transient decrease in cyclic AMP response on the first day after gonadotropin treatment and no change in testosterone response. By contrast, a 20-fold higher dose of hCG caused more rapid and complete loss of LH receptors, with major and transient occupancy of receptors at 24 hr and marked elevations of basal cyclic AMP and testosterone production in vitro. The initial occupancy of receptors was accompanied by a rapid fall in the cyclic AMP response to hCG in vitro, and was followed by marked receptor loss and inhibition of the cyclic AMP response for up to 5 days. The testosterone response to hCG in vitro was completely inhibited for about 3 days, then rose to the control level at 5 days, when only a small proportion of the original receptor sites and cyclic AMP response had begun to return. Such complete recovery of the steroidogenic response when only a fraction of the receptor population had returned was consistent with the presence of receptor reserve or "spare" receptors in the testis. These studies have demonstrated that negative regulation of LH receptors by exogenous gonadotropin is accompanied by consequent changes in cyclic AMP and testosterone responses to hCG in vitro. Hormone induced desensitization of interstitial cell responses was initially related to occupancy of LH receptors and later to a protracted loss of receptor sites.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bowers C. Y., Folkers K. Contraception and inhibition of ovulation by minipump infusion of the luteinizing hormone releasing hormone, active analogs and antagonists. Biochem Biophys Res Commun. 1976 Oct 4;72(3):1003–1007. doi: 10.1016/s0006-291x(76)80231-8. [DOI] [PubMed] [Google Scholar]
- Catt K. J., Dufau M. L. Spare gonadotrophin receptors in rat testis. Nat New Biol. 1973 Aug 15;244(137):219–221. doi: 10.1038/newbio244219a0. [DOI] [PubMed] [Google Scholar]
- Conti M., Harwood J. P., Hsueh A. J., Dufau M. L., Catt K. J. Gonadotropin-induced loss of hormone receptors and desensitization of adenylate cyclase in the ovary. J Biol Chem. 1976 Dec 10;251(23):7729–7731. [PubMed] [Google Scholar]
- Dufau M. L., Catt K. J., Tsuruhara T. A sensitive gonadotropin responsive system: radioimmunoassay of testosterone production by the rat testis in vitro. Endocrinology. 1972 Apr;90(4):1032–1040. doi: 10.1210/endo-90-4-1032. [DOI] [PubMed] [Google Scholar]
- Dufau M. L., Catt K. J., Tsuruhara T. Gonadotrophin stimulation of testosterone production by the rat testis in vitro. Biochim Biophys Acta. 1971 Dec 21;252(3):574–579. doi: 10.1016/0304-4165(71)90161-9. [DOI] [PubMed] [Google Scholar]
- Dufau M. L., Podesta E. J., Catt K. J. Physical characteristics of the gonadotropin receptor-hormone complexes formed in vivo and in vitro. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1272–1275. doi: 10.1073/pnas.72.4.1272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dufau M. L., Watanabe K., Catt K. J. Stimulation of cyclic AMP production by the rat testis during incubation with hCG in vitro. Endocrinology. 1973 Jan;92(1):6–11. doi: 10.1210/endo-92-1-6. [DOI] [PubMed] [Google Scholar]
- Gavin J. R., 3rd, Roth J., Neville D. M., Jr, de Meyts P., Buell D. N. Insulin-dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proc Natl Acad Sci U S A. 1974 Jan;71(1):84–88. doi: 10.1073/pnas.71.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinkle P. M., Tashjian A. H., Jr Thyrotropin-releasing hormone regulates the number of its own receptors in the GH3 strain of pituitary cells in culture. Biochemistry. 1975 Aug 26;14(17):3845–3851. doi: 10.1021/bi00688a017. [DOI] [PubMed] [Google Scholar]
- Hsueh A. J., Dufau M. L., Catt K. J. Regulation of luteinizing hormone receptors in testicular interstitial cells by gonadotropin. Biochem Biophys Res Commun. 1976 Oct 4;72(3):1145–1152. doi: 10.1016/s0006-291x(76)80251-3. [DOI] [PubMed] [Google Scholar]
- Hunzicker-Dunn M., Birnbaumer L. Adenylyl cyclase activities in ovarian tissues. II. Regulation of responsiveness to LH, FSH, and PGE1 in the rabbit. Endocrinology. 1976 Jul;99(1):185–197. doi: 10.1210/endo-99-1-185. [DOI] [PubMed] [Google Scholar]
- Hunzicker-Dunn M., Birnbaumer L. Adenylyl cyclase activities in ovarian tissues. III. Regulation of responsiveness to LH, FSH, and PGE1 in the prepubertal, cycling, pregnant, and pseudopregnant rat. Endocrinology. 1976 Jul;99(1):198–210. doi: 10.1210/endo-99-1-198. [DOI] [PubMed] [Google Scholar]
- Hunzicker-Dunn M., Birnbaumer L. Adenylyl cyclase activities in ovarian tissues. IV. Gonadotrophin-induced desensitization of the luteal adenylyl cyclase throughout pregnancy and pseudopregnancy in the rabbit and the rat. Endocrinology. 1976 Jul;99(1):211–222. doi: 10.1210/endo-99-1-211. [DOI] [PubMed] [Google Scholar]
- Johnson E. S., Gendrich R. L., White W. F. Delay of puberty and inhibition of reproductive processes in the rat by a gonadotropin-releasing hormone agonist analog. Fertil Steril. 1976 Jul;27(7):853–860. doi: 10.1016/s0015-0282(16)41963-1. [DOI] [PubMed] [Google Scholar]
- Johnson E. S., Seely J. H., White W. F., DeSombre E. R. Endocrine-dependent rat mammary tumor regression: use of a gonadotropin releasing hormone analog. Science. 1976 Oct 15;194(4262):329–330. doi: 10.1126/science.823643. [DOI] [PubMed] [Google Scholar]
- Kahn C. R., Neville D. M., Jr, Roth J. Insulin-receptor interaction in the obese-hyperglycemic mouse. A model of insulin resistance. J Biol Chem. 1973 Jan 10;248(1):244–250. [PubMed] [Google Scholar]
- Kebabian J. W., Zatz M., Romero J. A., Axelrod J. Rapid changes in rat pineal beta-adrenergic receptor: alterations in l-(3H)alprenolol binding and adenylate cyclase. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3735–3739. doi: 10.1073/pnas.72.9.3735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ketelslegers J. M., Knott G. D., Catt K. J. Kinetics of gonadotropin binding by receptors of the rat testis. Analysis by a nonlinear curve-fitting method. Biochemistry. 1975 Jul 15;14(14):3075–3083. doi: 10.1021/bi00685a006. [DOI] [PubMed] [Google Scholar]
- Kirschner M. A., Wider J. A., Ross G. T. Leydig cell function in men with gonadotrophin-producing testicular tumors. J Clin Endocrinol Metab. 1970 Apr;30(4):504–511. doi: 10.1210/jcem-30-4-504. [DOI] [PubMed] [Google Scholar]
- Lesniak M. A., Roth J., Gorden P., Gavin J. R., 3rd Human growth hormone radioreceptor assay using cultured human lymphocytes. Nat New Biol. 1973 Jan 3;241(105):20–22. doi: 10.1038/newbio241020a0. [DOI] [PubMed] [Google Scholar]
- Marsh J. M., Mills T. M., Lemaire W. J. Preovulatory changes in the synthesis of cyclic AMP by rabbit Graafian follicles. Biochim Biophys Acta. 1973 Mar 30;304(1):197–202. doi: 10.1016/0304-4165(73)90128-1. [DOI] [PubMed] [Google Scholar]
- Mendelson C., Dufau M., Catt K. Gonadotropin binding and stimulation of cyclic adenosine 3':5'-monophosphate and testosterone production in isolated Leydig cells. J Biol Chem. 1975 Nov 25;250(22):8818–8823. [PubMed] [Google Scholar]
- Mukherjee C., Caron M. G., Lefkowitz R. J. Catecholamine-induced subsensitivity of adenylate cyclase associated with loss of beta-adrenergic receptor binding sites. Proc Natl Acad Sci U S A. 1975 May;72(5):1945–1949. doi: 10.1073/pnas.72.5.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Negro-Vilar A., Krulich L., McCann S. M. Changes in serum prolactin and gonadotropins during sexual development of the male rat. Endocrinology. 1973 Sep;93(3):660–664. doi: 10.1210/endo-93-3-660. [DOI] [PubMed] [Google Scholar]
- Poulson R. The enzymic conversion of protoporphyrinogen IX to protoporphyrin IX in mammalian mitochondria. J Biol Chem. 1976 Jun 25;251(12):3730–3733. [PubMed] [Google Scholar]