Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Feb;74(2):633–637. doi: 10.1073/pnas.74.2.633

Roles of proteins from inner face of plasma membranes in susceptibility of of (Na+ + K+)-stimulated Mg2+ adenosinetriphosphatase to ouabain.

A Zachowski, L Lelievre, J Aubry, D Charlemagne, A Paraf
PMCID: PMC392346  PMID: 139608

Abstract

Purified right-side-out (RSO) and inside-out (IO) plasma membrane vesicles release 35% of the total plasma membrane proteins after EDTA treatment. After such a treatment both types of vesicles exhibited the same total activity of (Na+ + K+)-stimulated Mg2+ adenosinetriphosphatase (ATPase; ATP phosphohydrolase, EC 3.6.1.3) as in their native state. The EDTA treatment increases the enzyme sensitivity to ouabain by 350-fold in IO vesicles while being without any effect RSO vesicles. Thus, proteins released only from the IO vesicles led to a change in ouabain sensitivity of the (Na+ + K+)-stimulated Mg2+ ATPase. Moreover, only proteins released from IO vesicles, when added to treated IO vesicles with divalent cations, were able to restore the original resistance of the enzyme to ouabain; released proteins from RSO vesicles failed to make such a reconstitution. Thus, we assume that these proteins detach from the inner face of the plasma membrane upon EDTA treatment and are distinct from the enzyme. Polyacrylamide gel electrophoresis indicates that these inner face plasma membrane proteins are approximately 30,000 daltons.

Full text

PDF
633

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anner B., Mossmayer M. Rapid determination of inorganic phosphate in biological systems by a highly sensitive photometric method. Anal Biochem. 1975 May 12;65(1-2):305–309. doi: 10.1016/0003-2697(75)90514-x. [DOI] [PubMed] [Google Scholar]
  2. Bramley T. A., Coleman R., Finean J. B. Chemical, enzymological and permeability properties of human erythrocyte ghosts prepared by hypotonic lysis in media of different osmolarities. Biochim Biophys Acta. 1971 Sep 14;241(3):752–769. doi: 10.1016/0005-2736(71)90003-4. [DOI] [PubMed] [Google Scholar]
  3. Chipperfield A. R., Whittam R. Ouabain binding to the sodium pump. Nature. 1973 Mar 2;242(5392):62–63. doi: 10.1038/242062a0. [DOI] [PubMed] [Google Scholar]
  4. Emmelot P., Bos C. J. Studies on plasma membranes. 3. Mg2+-ATPase,(Na+-K+-Mg2+)-ATPase and 5'-nucleotidase activity of plasma membranes isolated from rat liver. Biochim Biophys Acta. 1966 Jul 13;120(3):369–382. doi: 10.1016/0926-6585(66)90304-9. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Lelievre L., Charlemagne D., Paraf A. Plasma membrane studies on drug-sensitive and -resistant cell lines. II. Ouabain sensitivity of (Na+ +K+)-stimulated Mg2+-ATPase. Biochim Biophys Acta. 1976 Dec 2;455(2):277–286. doi: 10.1016/0005-2736(76)90304-7. [DOI] [PubMed] [Google Scholar]
  8. Lelievre L. Plasma membranes from fibroblastic cells in culture. Isolation, morphological and enzymatic identification. Biochim Biophys Acta. 1973 Feb 16;291(3):662–670. doi: 10.1016/0005-2736(73)90471-9. [DOI] [PubMed] [Google Scholar]
  9. Lelièvre L., Charlemagne D., Paraf A. Rôle de constituants membranaires distincts de l'enzyme dans la sensibilité de l'ATPase Na+/K+ a l'ouabaïne. C R Acad Sci Hebd Seances Acad Sci D. 1976 Sep 20;283(5):539–542. [PubMed] [Google Scholar]
  10. Ottolenghi P. The reversible delipidation of a solubilized sodium-plus-potassium ion-dependent adenosine triphosphatase from the salt gland of the spiny dogfish. Biochem J. 1975 Oct;151(1):61–66. doi: 10.1042/bj1510061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Perrone J. R., Blostein R. Asymmetric interaction of inside-out and right-side-out erythrocyte membrane vesicles with ouabain. Biochim Biophys Acta. 1973 Feb 16;291(3):680–689. doi: 10.1016/0005-2736(73)90473-2. [DOI] [PubMed] [Google Scholar]
  12. Steck T. L., Weinstein R. S., Straus J. H., Wallach D. F. Inside-out red cell membrane vesicles: preparation and purification. Science. 1970 Apr 10;168(3928):255–257. doi: 10.1126/science.168.3928.255. [DOI] [PubMed] [Google Scholar]
  13. Unanue E. R., Perkins W. D., Karnovsky M. J. Ligand-induced movement of lymphocyte membrane macromolecules. I. Analysis by immunofluorescence and ultrastructural radioautography. J Exp Med. 1972 Oct 1;136(4):885–906. doi: 10.1084/jem.136.4.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  15. Walsh F. S., Barber B. H., Crumpton M. J. Preparation of inside-out vesicles of pig lymphocyte plasma membrane. Biochemistry. 1976 Aug 10;15(16):3557–3563. doi: 10.1021/bi00661a025. [DOI] [PubMed] [Google Scholar]
  16. Yahara I., Edelman G. M. Modulation of lymphocyte receptor redistribution by concanavalin A, anti-mitotic agents and alterations of pH. Nature. 1973 Nov 16;246(5429):152–155. doi: 10.1038/246152a0. [DOI] [PubMed] [Google Scholar]
  17. Yahara I., Edelman G. M. Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A. Proc Natl Acad Sci U S A. 1972 Mar;69(3):608–612. doi: 10.1073/pnas.69.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zachowski A., Migliore-Samour D., Paraf A., Jollès P. Non specific effector-induced enzyme modulation in isolated plasma membranes. FEBS Lett. 1975 Mar 15;52(1):57–61. doi: 10.1016/0014-5793(75)80637-5. [DOI] [PubMed] [Google Scholar]
  19. Zachowski A., Paraf A. Use of a concanavalin A polymer to isolate right side-out vesicles of purified plasma membranes from eukariotic cells. Biochem Biophys Res Commun. 1974 Apr 8;57(3):787–792. doi: 10.1016/0006-291x(74)90615-9. [DOI] [PubMed] [Google Scholar]
  20. de Petris S., Raff M. C. Normal distribution, patching and capping of lymphocyte surface immunoglobulin studied by electron microscopy. Nat New Biol. 1973 Feb 28;241(113):257–259. doi: 10.1038/newbio241257a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES