Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Feb;74(2):707–710. doi: 10.1073/pnas.74.2.707

Enhanced antibody affinity in sublethally irradiated mice and bone marrow chimeras.

G Doria, G Gorini, A Di Michele
PMCID: PMC392362  PMID: 265533

Abstract

Sublethally irradiated mice primed with dinitrophenyl (Dnp)-keyhole limpet hemocyanin immediately after irradiation or 30 days later and subsequently boosted with a second injection of antigen displayed a secondary response to Dnp characterized by antibody affinity greater than that in unirradiated controls. Also, in radiation chimeras primed with Dnp-keyhole limpet hemocyanin 120 days after syngeneic or allogeneic bone marrow transplantation the antibodies against Dnp produced after boosting were of higher affinity than the antibodies raised in normal mice. These findings are tentatively attributed to lack of suppressor thymus-derived lymphocytes (T cells) in sublethally irradiated mice and bone marrow chimeras, in which the enhanced ability to produce antibodies of high affinity may compensate for quantitative defects of the immune system.

Full text

PDF
707

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarossi G., Doria G. Recovery of the hemolysin response in mouse radiation chimeras. Transplantation. 1968 May;6(3):419–426. doi: 10.1097/00007890-196805000-00013. [DOI] [PubMed] [Google Scholar]
  2. BENACERRAF B. Influence of irradiation on resistance to infection. Bacteriol Rev. 1960 Mar;24(1):35–40. doi: 10.1128/br.24.1.35-40.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Basten A., Miller J. F., Johnson P. T cell-dependent suppression of an anti-hapten antibody response. Transplant Rev. 1975;26:130–169. doi: 10.1111/j.1600-065x.1975.tb00178.x. [DOI] [PubMed] [Google Scholar]
  4. CHIN P. H., SILVERMAN M. S. The effect of whole body x-irradiation of mice on immunity to tetanus toxoid. II. The delayed immune response to injections of tetanus toxoid. J Immunol. 1956 Oct;77(4):266–270. [PubMed] [Google Scholar]
  5. CONGDON C. C., GENGOZIAN N., MAKINODAN T. Agglutinin production in normal, sublethally irradiated, and lethally irradiated mice treated with mouse bone marrow. J Immunol. 1956 Oct;77(4):250–256. [PubMed] [Google Scholar]
  6. DORIA G., GOODMAN J. W., GENGOZIAN N., CONGDON C. C. Immunologic study of antibody-forming cells in mouse radiation chimeras. J Immunol. 1962 Jan;88:20–30. [PubMed] [Google Scholar]
  7. Doria G., Agarossi G. Thymus dependence of adoptive immunity in irradiated mice. Transplantation. 1968 Mar;6(2):218–229. doi: 10.1097/00007890-196803000-00008. [DOI] [PubMed] [Google Scholar]
  8. Doria G., Schiaffini G., Garavini M., Mancini C. The rise and fall of antibody avidity at the level of single immunocytes. J Immunol. 1972 Dec;109(6):1245–1253. [PubMed] [Google Scholar]
  9. GENGOZIAN N., URSO I. S., CARTER R. R., MAKINODAN T. Immune status of irradiated mice treated with adult bone marrow and fetal hematopoietic tissue. Transplant Bull. 1961 Jan;27:87–90. doi: 10.1097/00006534-196101000-00030. [DOI] [PubMed] [Google Scholar]
  10. Gengozian N., Congdon C. C., Allen E. A., Toya R. E. Immune status of allogeneic radiation chimeras. Transplant Proc. 1971 Mar;3(1):434–436. [PubMed] [Google Scholar]
  11. Gershon R. K., Paul W. E. Effect of thymus-derived lymphocytes on amount and affinity of anti-hapten antibody. J Immunol. 1971 Mar;106(3):872–874. [PubMed] [Google Scholar]
  12. Gorczynski R. M., Miller R. G., Phillips R. A. In vivo requirement for a radiation-resistant cells in the immune response to sheep erythrocytes. J Exp Med. 1971 Nov 1;134(5):1201–1221. doi: 10.1084/jem.134.5.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MORGAN P., SHERWOOD N. P., WERDER A. A., YOUNGSTROM K. Studies on anaphylactic shock in the mouse. II. Effects of single whole-body x-irradiation of 500 roentgens. J Immunol. 1960 Mar;84:325–332. [PubMed] [Google Scholar]
  14. Rotter V., Trainin N. Inhibition of tumor growth in syngeneic chimeric mice mediated by a depletion of suppressor T cells. Transplantation. 1975 Jul;20(1):68–74. doi: 10.1097/00007890-197507000-00011. [DOI] [PubMed] [Google Scholar]
  15. Schmidtke J. R., Dixon F. J. The effect of in vivo irradiation on macrophage function. J Immunol. 1973 Mar;110(3):848–854. [PubMed] [Google Scholar]
  16. Siskind G. W., Benacerraf B. Cell selection by antigen in the immune response. Adv Immunol. 1969;10:1–50. doi: 10.1016/s0065-2776(08)60414-9. [DOI] [PubMed] [Google Scholar]
  17. Tada T., Taniguchi M., Takemori T. Properties of primed suppressor T cells and their products. Transplant Rev. 1975;26:106–129. doi: 10.1111/j.1600-065x.1975.tb00177.x. [DOI] [PubMed] [Google Scholar]
  18. Urbain J., Van Acker A., De Vos-Cloetens C., Urbain-Vansanten G. Increase and decrease in binding affinity of antibodies during the immune response. Immunochemistry. 1972 Feb;9(2):121–136. doi: 10.1016/0019-2791(72)90033-x. [DOI] [PubMed] [Google Scholar]
  19. Urso P., Gengozian N. T cell deficiency in mouse allogeneic radiation chimeras. J Immunol. 1973 Sep;111(3):712–719. [PubMed] [Google Scholar]
  20. Werblin T. P., Siskind G. W. Distribution of antibody affinities: technique of measurement. Immunochemistry. 1972 Oct;9(10):987–1011. doi: 10.1016/0019-2791(72)90110-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES