Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Feb;74(2):780–784. doi: 10.1073/pnas.74.2.780

Biological function of gramicidin: studies on gramicidin-negative mutants.

P K Mukherjee, H Paulus
PMCID: PMC392378  PMID: 66680

Abstract

By the use of a rapid radioautographic screening procedure, two mutants of Bacillus brevis ATCC 8185 that have lost the ability to produce gramicidin have been isolated. These mutants produced normal levels of tyrocidine and sporulated at the same frequency as the parent strain. Their spores, however, were more heat-sensitive and had a reduced dipicolinic acid content. Gramicidin-producing revertants occurred at a relatively high frequency among the survivors of prolonged heat treatment and had also regained the ability to produce heat-resistant spores. A normal sport phenotype could also be restored by the addition of gramicidin to cultures of the mutant strain at the end of the exponential growth. On the other hand, the addition of dipicolinic acid could not cure the spore defect. These results provide strong evidence that the inability to produce gramicidin is directly responsible for the observed spore defects. Indeed, they unambiguously demonstrate a function of a peptide antibiotic in bacterial sporulation. The possibility that this function consists of the regulation of transcription during the transition from growth to sporulation is discussed.

Full text

PDF
780

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer K., Roskoski R., Jr, Kleinkauf H., Lipmann F. Synthesis of a linear gramicidin by a combination of biosynthetic and organic methods. Biochemistry. 1972 Aug 15;11(17):3266–3271. doi: 10.1021/bi00767a022. [DOI] [PubMed] [Google Scholar]
  2. Dhar M. M., Khan A. W. Formation of antibiotics. Nature. 1971 Sep 17;233(5316):182–184. doi: 10.1038/233182a0. [DOI] [PubMed] [Google Scholar]
  3. Fukuda A., Gilvarg C. The relationship of dipicolinate and lysine biosynthesis in Bacillus megaterium. J Biol Chem. 1968 Jul 25;243(14):3871–3876. [PubMed] [Google Scholar]
  4. Haavik H. I., Froyshov O. Function of peptide antibiotics in producer organisms. Nature. 1975 Mar 6;254(5495):79–82. doi: 10.1038/254079a0. [DOI] [PubMed] [Google Scholar]
  5. Haavik H. I., Thomassen S. A bacitracin-negative mutant of Bacillus licheniformis which is able to sporulate. J Gen Microbiol. 1973 Jun;76(2):451–454. doi: 10.1099/00221287-76-2-451. [DOI] [PubMed] [Google Scholar]
  6. Hodgson B. Possible roles for antibiotics and other biologically active peptides at specific stages during sporulation of Bacillaceae. J Theor Biol. 1971 Jan;30(1):111–119. doi: 10.1016/0022-5193(71)90040-3. [DOI] [PubMed] [Google Scholar]
  7. Hranueli D., Piggot P. J., Mandelstam J. Statistical estimate of the total number of operons specific for Bacillus subtilis sporulation. J Bacteriol. 1974 Sep;119(3):684–690. doi: 10.1128/jb.119.3.684-690.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ito J., Spizizen J. Increased rate of asporogenous mutations following treatment of Bacillus subtilis spores with ethyl methanesulfonate. Mutat Res. 1971 Sep;13(1):93–96. doi: 10.1016/0027-5107(71)90130-8. [DOI] [PubMed] [Google Scholar]
  9. JANSSEN F. W., LUND A. J., ANDERSON L. E. Colorimetric assay for dipicolinic acid in bacterial spores. Science. 1958 Jan 3;127(3288):26–27. doi: 10.1126/science.127.3288.26. [DOI] [PubMed] [Google Scholar]
  10. Kambe M., Imae Y., Kurahashi K. Biochemical studies on gramicidin S non-producing mutants of Bacillus brevis ATCC 9999. J Biochem. 1974 Mar;75(3):481–493. doi: 10.1093/oxfordjournals.jbchem.a130417. [DOI] [PubMed] [Google Scholar]
  11. Pollock M. R. The function and evolution of penicillinase. Proc R Soc Lond B Biol Sci. 1971 Dec 31;179(1057):385–401. doi: 10.1098/rspb.1971.0104. [DOI] [PubMed] [Google Scholar]
  12. Raetz C. R. Isolation of Escherichia coli mutants defective in enzymes of membrane lipid synthesis. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2274–2278. doi: 10.1073/pnas.72.6.2274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ray B., Bose S. K. Analysis of spore and antibiotic markers in revertants from asporogenous and sporogenous non-producer mutants of Bacillus subtilis. Acta Microbiol Pol A. 1974;6(1):101–109. [PubMed] [Google Scholar]
  14. Ray B., Bose S. K. Physiology of spores of mycobacillin producer and non-producer mutants of Bacillus sbutilis. Folia Microbiol (Praha) 1974;19(3):203–208. doi: 10.1007/BF02895019. [DOI] [PubMed] [Google Scholar]
  15. Ristow H., Schazschneider B., Bauer K., Kleikauf H. Tyrocidine and the linear gramicidin. Do these peptide antibiotics play an antagonistic regulative role in sporulation? Biochim Biophys Acta. 1975 May 1;390(2):246–252. [PubMed] [Google Scholar]
  16. SARGES R., WITKOP B. GRAMICIDIN A. V. THE STRUCTURE OF VALINE- AND ISOLEUCINE-GRAMICIDIN A. J Am Chem Soc. 1965 May 5;87:2011–2020. doi: 10.1021/ja01087a027. [DOI] [PubMed] [Google Scholar]
  17. Sarkar N., Paulus H. Function of peptide antibiotics in sporulation. Nat New Biol. 1972 Oct 25;239(95):228–230. doi: 10.1038/newbio239228a0. [DOI] [PubMed] [Google Scholar]
  18. Schaeffer P. Sporulation and the production of antibiotics, exoenzymes, and exotonins. Bacteriol Rev. 1969 Mar;33(1):48–71. doi: 10.1128/br.33.1.48-71.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schazschneider B., Ristow H., Kleinkauf H. Interaction between the antibiotic tyrocidine and DNA in vitro. Nature. 1974 Jun 21;249(459):757–759. doi: 10.1038/249757a0. [DOI] [PubMed] [Google Scholar]
  20. Schmitt R., Freese E. Curing of a sporulation mutant and antibiotic activity of Bacillus subtilis. J Bacteriol. 1968 Oct;96(4):1255–1265. doi: 10.1128/jb.96.4.1255-1265.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weinberg E. D. Secondary metabolism: raison d'être. Perspect Biol Med. 1971;14(4):565–577. doi: 10.1353/pbm.1971.0033. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES