Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Apr;75(4):1616–1619. doi: 10.1073/pnas.75.4.1616

Theoretical study of protein--lipid interactions in bilayer membranes.

J C Owicki, M W Springgate, H M McConnell
PMCID: PMC392388  PMID: 273895

Abstract

An analysis is given for the perturbation of the order and composition of lipid bilayers near an intrinsic membrane protein. Two cases are examined: the protein influences the lipid order (i.e., "fluidity"), and the protein associates with one component of a lipid mixture preferentially. The order perturbation is studied as a function of temperature and lateral pressure by using Landau--de Gennes theory and a variational procedure. It is concluded that, for a given lateral pressure, the greatest amount of boundary lipid is present at the lipid phase-transition temperature. A critical point for the phase transition occurs, near which the amount of boundary lipid increases dramatically. The composition perturbation is modeled in a binary lipid mixture by using a simple regular solution theory. The perturbation is found not to extent much beyond the directly bound layer of lipids unless the solution is near a critical mixing point.

Full text

PDF
1616

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brûlet P., McConnell H. M. Protein-lipid interactions glycophorin and dipalmitolyphosphatidylcholine. Biochem Biophys Res Commun. 1976 Jan 26;68(2):363–368. doi: 10.1016/0006-291x(76)91153-0. [DOI] [PubMed] [Google Scholar]
  2. Curatolo W., Sakura J. D., Small D. M., Shipley G. G. Protein-lipid interactions: recombinants of the proteolipid apoprotein of myelin with dimyristoyllecithin. Biochemistry. 1977 May 31;16(11):2313–2319. doi: 10.1021/bi00630a001. [DOI] [PubMed] [Google Scholar]
  3. Dahlquist F. W., Muchmore D. C., Davis J. H., Bloom M. Deuterium magnetic resonance studies of the interaction of lipids with membrane proteins. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5435–5439. doi: 10.1073/pnas.74.12.5435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Galla H. J., Sackmann E. Chemically induced lipid phase separation in model membranes containing charged lipids: a spin label study. Biochim Biophys Acta. 1975 Sep 2;401(3):509–529. doi: 10.1016/0005-2736(75)90249-7. [DOI] [PubMed] [Google Scholar]
  5. Griffith O. H., Jost P., Capaldi R. A., Vanderkooi G. Boundary lipid and fluid bilayer regions in cytochrome oxidase model membranes. Ann N Y Acad Sci. 1973 Dec 31;222:561–573. doi: 10.1111/j.1749-6632.1973.tb15287.x. [DOI] [PubMed] [Google Scholar]
  6. Hesketh T. R., Smith G. A., Houslay M. D., McGill K. A., Birdsall N. J., Metcalfe J. C., Warren G. B. Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin. Biochemistry. 1976 Sep 21;15(19):4145–4151. doi: 10.1021/bi00664a002. [DOI] [PubMed] [Google Scholar]
  7. Hui S. W., Cowden M., Papahadjopoulos D., Parsons D. F. Electron diffraction study of hydrated phospholipid single bilayers. Effects of temperature hydration and surface pressure of the "precursor" monolayer. Biochim Biophys Acta. 1975 Mar 25;382(3):265–275. doi: 10.1016/0005-2736(75)90269-2. [DOI] [PubMed] [Google Scholar]
  8. Jacobs R. E., Hudson B., Andersen H. C. A theory of the chain melting phase transition of aqueous phospholipid dispersions. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3993–3997. doi: 10.1073/pnas.72.10.3993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Janiak M. J., Small D. M., Shipley G. G. Nature of the Thermal pretransition of synthetic phospholipids: dimyristolyl- and dipalmitoyllecithin. Biochemistry. 1976 Oct 19;15(21):4575–4580. doi: 10.1021/bi00666a005. [DOI] [PubMed] [Google Scholar]
  10. Jost P. C., Griffith O. H., Capaldi R. A., Vanderkooi G. Evidence for boundary lipid in membranes. Proc Natl Acad Sci U S A. 1973 Feb;70(2):480–484. doi: 10.1073/pnas.70.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jost P., Griffith O. H., Capaldi R. A., Vanderkooi G. Identification and extent of fluid bilayer regions in membranous cytochrome oxidase. Biochim Biophys Acta. 1973 Jun 22;311(2):141–152. doi: 10.1016/0005-2736(73)90261-7. [DOI] [PubMed] [Google Scholar]
  12. Marcelja S. Chain ordering in liquid crystals. II. Structure of bilayer membranes. Biochim Biophys Acta. 1974 Oct 29;367(2):165–176. doi: 10.1016/0005-2736(74)90040-6. [DOI] [PubMed] [Google Scholar]
  13. Marcelja S. Lipid-mediated protein interaction in membranes. Biochim Biophys Acta. 1976 Nov 11;455(1):1–7. doi: 10.1016/0005-2736(76)90149-8. [DOI] [PubMed] [Google Scholar]
  14. Phillips M. C., Chapman D. Monolayer characteristics of saturated 1,2,-diacyl phosphatidylcholines (lecithins) and phosphatidylethanolamines at the air-water interface. Biochim Biophys Acta. 1968 Nov 5;163(3):301–313. doi: 10.1016/0005-2736(68)90115-6. [DOI] [PubMed] [Google Scholar]
  15. Vanderkooi G., Senior A. E., Capaldi R. A., Hayashi H. Biological membrane structure. 3. The lattice structure of membranous cytochrome oxidase. Biochim Biophys Acta. 1972 Jul 3;274(1):38–48. doi: 10.1016/0005-2736(72)90278-7. [DOI] [PubMed] [Google Scholar]
  16. Vilallonga F. Surface of L-alpha-diphalmitoyl lecithin at the air-water interface. Biochim Biophys Acta. 1968 Nov 5;163(3):290–300. doi: 10.1016/0005-2736(68)90114-4. [DOI] [PubMed] [Google Scholar]
  17. Warren G. B., Houslay M. D., Metcalfe J. C., Birdsall N. J. Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein. Nature. 1975 Jun 26;255(5511):684–687. doi: 10.1038/255684a0. [DOI] [PubMed] [Google Scholar]
  18. Wilkinson D. A., Nagle J. F. A differential dilatometer. Anal Biochem. 1978 Jan;84(1):263–271. doi: 10.1016/0003-2697(78)90509-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES