Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Apr;75(4):1690–1694. doi: 10.1073/pnas.75.4.1690

Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides

Albert L Lehninger 1, Anibal Vercesi 1,*, Enitan A Bababunmi 1,
PMCID: PMC392404  PMID: 25436

Abstract

Mitochondria from normal rat liver and heart, and also Ehrlich tumor cells, respiring on succinate as energy source in the presence of rotenone (to prevent net electron flow to oxygen from the endogenous pyridine nucleotides), rapidly take up Ca2+ and retain it so long as the pyridine nucleotides are kept in the reduced state. When acetoacetate is added to bring the pyridine nucleotides into a more oxidized state, Ca2+ is released to the medium. A subsequent addition of a reductant of the pyridine nucleotides such as β-hydroxybutyrate, glutamate, or isocitrate causes reuptake of the released Ca2+. Successive cycles of Ca2+ release and uptake can be induced by shifting the redox state of the pyridine nucleotides to more oxidized and more reduced states, respectively. Similar observations were made when succinate oxidation was replaced as energy source by ascorbate oxidation or by the hydrolysis of ATP. These and other observations form the basis of a hypothesis for feedback regulation of Ca2+-dependent substrate- or energy-mobilizing enzymatic reactions by the uptake or release of mitochondrial Ca2+, mediated by the cytosolic phosphate potential and the ATP-dependent reduction of mitochondrial pyridine nucleotides by reversal of electron transport.

Keywords: calcium, membrane transport, electron transport

Full text

PDF
1690

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bielawski J., Lehninger A. L. Stoichiometric relationships in mitochondrial accumulation of calcium and phosphate supported by hydrolysis of adenosine triphosphate. J Biol Chem. 1966 Oct 10;241(19):4316–4322. [PubMed] [Google Scholar]
  2. Brinley F. J., Jr, Tiffert J. T., Mullins L. J., Scarpa A. Kinetic measurement of Ca2+ transport by mitochondria in situ. FEBS Lett. 1977 Oct 15;82(2):197–200. doi: 10.1016/0014-5793(77)80583-8. [DOI] [PubMed] [Google Scholar]
  3. CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
  4. Carafoli E., Malmström K., Sigel E., Crompton M. The regulation of intracellular calcium. Clin Endocrinol (Oxf) 1976;5 (Suppl):49S–59S. doi: 10.1111/j.1365-2265.1976.tb03815.x. [DOI] [PubMed] [Google Scholar]
  5. Chudapongse P. Further studies on the effect of phosphoenolpyruvate on respiration-dependent calcium transport by rat heart mitochondria. Biochim Biophys Acta. 1976 Feb 16;423(2):196–202. doi: 10.1016/0005-2728(76)90178-x. [DOI] [PubMed] [Google Scholar]
  6. Eboli M. L., Cittadini A., Terranova T. Effect of low calcium concentration on the oxidation of NAD-linked substrates in rat liver and tumor mitochondria. Experientia. 1974 Oct 15;30(10):1125–1127. doi: 10.1007/BF01923646. [DOI] [PubMed] [Google Scholar]
  7. Landry Y., Lehninger A. L. Transport of calcium ions by Ehrlich ascites-tumour cells. Biochem J. 1976 Aug 15;158(2):427–438. doi: 10.1042/bj1580427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
  9. Lehninger A. L. Mitochondria and calcium ion transport. Biochem J. 1970 Sep;119(2):129–138. doi: 10.1042/bj1190129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Malmström K., Carafoli E. Effects of prostaglandins on the interaction of Ca2+ with mitochondria. Arch Biochem Biophys. 1975 Dec;171(2):418–423. doi: 10.1016/0003-9861(75)90050-8. [DOI] [PubMed] [Google Scholar]
  11. Ontko J. A., Otto D. A. Calcium-mediated alterations in the oxidation-reduction state of pyridine nucleotidesin isolated liver cells. FEBS Lett. 1975 May 15;53(3):297–301. doi: 10.1016/0014-5793(75)80040-8. [DOI] [PubMed] [Google Scholar]
  12. Pozzan T., Bragadin M., Azzone G. F. Disequilibrium between steady-state Ca2+ accumulation ratio and membrane potential in mitochondria. Pathway and role of Ca2+ efflux. Biochemistry. 1977 Dec 13;16(25):5618–5625. doi: 10.1021/bi00644a036. [DOI] [PubMed] [Google Scholar]
  13. Puskin J. S., Gunter T. E., Gunter K. K., Russell P. R. Evidence for more than one Ca2+ transport mechanism in mitochondria. Biochemistry. 1976 Aug 24;15(17):3834–3842. doi: 10.1021/bi00662a029. [DOI] [PubMed] [Google Scholar]
  14. ROSSI C. S., LEHNINGER A. L. STOICHIOMETRIC RELATIONSHIPS BETWEEN ACCUMULATION OF IONS BY MITOCHONDRIA AND THE ENERGY-COUPLING SITES IN THE RESPIRATORY CHAIN. Biochem Z. 1963;338:698–713. [PubMed] [Google Scholar]
  15. ROSSI C. S., LEHNINGER A. L. STOICHIOMETRY OF RESPIRATORY STIMULATION, ACCUMULATION OF CA++ AND PHOSPHATE, AND OXIDATIVE PHOSPHORYLATION IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1964 Nov;239:3971–3980. [PubMed] [Google Scholar]
  16. Reynafarje B., Lehninger A. L. Electric charge stoichiometry of calcium translocation in mitochondria. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1273–1279. doi: 10.1016/s0006-291x(77)80117-4. [DOI] [PubMed] [Google Scholar]
  17. Rose B., Loewenstein W. R. Calcium ion distribution in cytoplasm visualised by aequorin: diffusion in cytosol restricted by energized sequestering. Science. 1975 Dec 19;190(4220):1204–1206. doi: 10.1126/science.1198106. [DOI] [PubMed] [Google Scholar]
  18. Sordahl L. A. Effects of magnesium, Ruthenium red and the antibiotic ionophore A-23187 on initial rates of calcium uptake and release by heart mitochondria. Arch Biochem Biophys. 1975 Mar;167(1):104–115. doi: 10.1016/0003-9861(75)90446-4. [DOI] [PubMed] [Google Scholar]
  19. Vinogradov A., Scarpa A., Chance B. Calcium and pyridine nucleotide interaction in mitochondrial membranes. Arch Biochem Biophys. 1972 Oct;152(2):646–654. doi: 10.1016/0003-9861(72)90261-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES