Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 May 28;93(11):5307–5312. doi: 10.1073/pnas.93.11.5307

Adenine phosphoribosyltransferase-deficient mice develop 2,8-dihydroxyadenine nephrolithiasis.

S J Engle 1, M G Stockelman 1, J Chen 1, G Boivin 1, M N Yum 1, P M Davies 1, M Y Ying 1, A Sahota 1, H A Simmonds 1, P J Stambrook 1, J A Tischfield 1
PMCID: PMC39241  PMID: 8643571

Abstract

Adenine phosphoribosyltransferase (APRT) deficiency in humans is an autosomal recessive syndrome characterized by the urinary excretion of adenine and the highly insoluble compound 2,8-dihydroxyadenine (DHA) that can produce kidney stones or renal failure. Targeted homologous recombination in embryonic stem cells was used to produce mice that lack APRT. Mice homozygous for a null Aprt allele excrete adenine and DHA crystals in the urine. Renal histopathology showed extensive tubular dilation, inflammation, necrosis, and fibrosis that varied in severity between different mouse backgrounds. Thus, biochemical and histological changes in these mice mimic the human disease and provide a suitable model of human hereditary nephrolithiasis.

Full text

PDF
5307

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartlett G. R. Metabolism by man of intravenously administered adenine. Transfusion. 1977 Jul-Aug;17(4):367–373. doi: 10.1046/j.1537-2995.1977.17477216865.x. [DOI] [PubMed] [Google Scholar]
  2. Bartlett G. R. Metabolism by the rabbit of intravenously administered adenine. Transfusion. 1977 Jul-Aug;17(4):351–357. doi: 10.1046/j.1537-2995.1977.17477216863.x. [DOI] [PubMed] [Google Scholar]
  3. Ceballos-Picot I., Perignon J. L., Hamet M., Daudon M., Kamoun P. 2,8-Dihydroxyadenine urolithiasis, an underdiagnosed disease. Lancet. 1992 Apr 25;339(8800):1050–1051. [PubMed] [Google Scholar]
  4. Devenuto F., Wilson S. M., Billings T. A., Shields C. E. In vivo distribution of injected 14C-dioxyadenine in tissues and organs of normal rats. Transfusion. 1976 Jan-Feb;16(1):24–31. doi: 10.1046/j.1537-2995.1976.16176130833.x. [DOI] [PubMed] [Google Scholar]
  5. Doetschman T. C., Eistetter H., Katz M., Schmidt W., Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol. 1985 Jun;87:27–45. [PubMed] [Google Scholar]
  6. Dush M. K., Sikela J. M., Khan S. A., Tischfield J. A., Stambrook P. J. Nucleotide sequence and organization of the mouse adenine phosphoribosyltransferase gene: presence of a coding region common to animal and bacterial phosphoribosyltransferases that has a variable intron/exon arrangement. Proc Natl Acad Sci U S A. 1985 May;82(9):2731–2735. doi: 10.1073/pnas.82.9.2731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ericson A., Groth T., Niklasson F., de Verdier C. H. Plasma concentration and renal excretion of adenine and 2,8-dihydroxyadenine after administration of adenine in man. Scand J Clin Lab Invest. 1980 Feb;40(1):1–8. doi: 10.3109/00365518009091520. [DOI] [PubMed] [Google Scholar]
  8. Fox I. H., LaCroix S., Planet G., Moore M. Partial deficiency of adenine phosphoribosyltransferase in man. Medicine (Baltimore) 1977 Nov;56(6):515–526. doi: 10.1097/00005792-197711000-00006. [DOI] [PubMed] [Google Scholar]
  9. Fratini A., Simmers R. N., Callen D. F., Hyland V. J., Tischfield J. A., Stambrook P. J., Sutherland G. R. A new location for the human adenine phosphoribosyltransferase gene (APRT) distal to the haptoglobin (HP) and fra(16)(q23)(FRA16D) loci. Cytogenet Cell Genet. 1986;43(1-2):10–13. doi: 10.1159/000132291. [DOI] [PubMed] [Google Scholar]
  10. Fye K. H., Sahota A., Hancock D. C., Gelb A. B., Chen J., Sparks J. W., Sibley R. K., Tischfield J. A. Adenine phosphoribosyltransferase deficiency with renal deposition of 2,8-dihydroxyadenine leading to nephrolithiasis and chronic renal failure. Arch Intern Med. 1993 Mar 22;153(6):767–770. [PubMed] [Google Scholar]
  11. Gleeson M. J., Griffith D. P. Re: Distribution of patients with 2,8-dihydroxyadenine urolithiasis and adenine phosphoribosyltransferase deficiency in Japan. J Urol. 1989 Sep;142(3):834–834. doi: 10.1016/s0022-5347(17)38924-3. [DOI] [PubMed] [Google Scholar]
  12. Glicklich D., Gruber H. E., Matas A. J., Tellis V. A., Karwa G., Finley K., Salem C., Soberman R., Seegmiller J. E. 2,8-dihydroxyadenine urolithiasis: report of a case first diagnosed after renal transplant. Q J Med. 1988 Oct;68(258):785–793. [PubMed] [Google Scholar]
  13. Gretz N., Meisinger E., Strauch M. Limitations and problems of animal experiments in uremia. Contrib Nephrol. 1988;60:252–263. doi: 10.1159/000414810. [DOI] [PubMed] [Google Scholar]
  14. Henderson J. F., Zombor G., Johnson M. M., Smith C. M. Variation in erythrocyte purine metabolism among mouse strains. Comp Biochem Physiol B. 1983;76(3):419–422. doi: 10.1016/0305-0491(83)90268-7. [DOI] [PubMed] [Google Scholar]
  15. Hooper M., Hardy K., Handyside A., Hunter S., Monk M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature. 1987 Mar 19;326(6110):292–295. doi: 10.1038/326292a0. [DOI] [PubMed] [Google Scholar]
  16. Kamatani N., Terai C., Kuroshima S., Nishioka K., Mikanagi K. Genetic and clinical studies on 19 families with adenine phosphoribosyltransferase deficiencies. Hum Genet. 1987 Feb;75(2):163–168. doi: 10.1007/BF00591080. [DOI] [PubMed] [Google Scholar]
  17. Kooij A. A re-evaluation of the tissue distribution and physiology of xanthine oxidoreductase. Histochem J. 1994 Dec;26(12):889–915. [PubMed] [Google Scholar]
  18. Kuehn M. R., Bradley A., Robertson E. J., Evans M. J. A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice. Nature. 1987 Mar 19;326(6110):295–298. doi: 10.1038/326295a0. [DOI] [PubMed] [Google Scholar]
  19. Lee P. C. Developmental changes of adenosine deaminase, xanthine oxidase, and uricase in mouse tissues. Dev Biol. 1973 Apr;31(2):227–233. doi: 10.1016/0012-1606(73)90259-5. [DOI] [PubMed] [Google Scholar]
  20. Manchester K. M., Amy N. K. Xanthine oxidase activity and immunologically detectable protein in the C57B1/6 mouse. Int J Biochem. 1988;20(10):1061–1066. doi: 10.1016/0020-711x(88)90250-9. [DOI] [PubMed] [Google Scholar]
  21. Mansour S. L., Thomas K. R., Capecchi M. R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature. 1988 Nov 24;336(6197):348–352. doi: 10.1038/336348a0. [DOI] [PubMed] [Google Scholar]
  22. Migchielsen A. A., Breuer M. L., van Roon M. A., te Riele H., Zurcher C., Ossendorp F., Toutain S., Hershfield M. S., Berns A., Valerio D. Adenosine-deaminase-deficient mice die perinatally and exhibit liver-cell degeneration, atelectasis and small intestinal cell death. Nat Genet. 1995 Jul;10(3):279–287. doi: 10.1038/ng0795-279. [DOI] [PubMed] [Google Scholar]
  23. Montero C., Smolenski R. T., Duley J. A., Simmonds H. A. S-adenosylmethionine increases erythrocyte ATP in vitro by a route independent of adenosine kinase. Biochem Pharmacol. 1990 Dec 15;40(12):2617–2623. doi: 10.1016/0006-2952(90)90579-a. [DOI] [PubMed] [Google Scholar]
  24. Moore G. L., Ledford M. E. A modified fluorometric assay for adenine in plasma and urine. Biochem Med. 1975 Oct;14(2):147–151. doi: 10.1016/0006-2944(75)90030-7. [DOI] [PubMed] [Google Scholar]
  25. Müllenbach R., Lagoda P. J., Welter C. An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 1989 Dec;5(12):391–391. [PubMed] [Google Scholar]
  26. Parks D. A., Granger D. N. Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol Scand Suppl. 1986;548:87–99. [PubMed] [Google Scholar]
  27. Peck C. C., Bailey F. J., Moore G. L. Enhanced solubility of 2,8 dihydroxyadenine (DOA) in human urine. Transfusion. 1977 Jul-Aug;17(4):383–390. doi: 10.1046/j.1537-2995.1977.17477216867.x. [DOI] [PubMed] [Google Scholar]
  28. Sahota A., Chen J., Behzadian M. A., Ravindra R., Takeuchi H., Stambrook P. J., Tischfield J. A. 2,8-Dihydroxyadenine lithiasis in a Japanese patient heterozygous at the adenine phosphoribosyltransferase locus. Am J Hum Genet. 1991 May;48(5):983–989. [PMC free article] [PubMed] [Google Scholar]
  29. Sahota A., Chen J., Boyadjiev S. A., Gault M. H., Tischfield J. A. Missense mutation in the adenine phosphoribosyltransferase gene causing 2,8-dihydroxyadenine urolithiasis. Hum Mol Genet. 1994 May;3(5):817–818. doi: 10.1093/hmg/3.5.817. [DOI] [PubMed] [Google Scholar]
  30. Smith G. W., Wright V. Allopurinol. Br J Clin Pract. 1987 Apr;41(4):710–711. [PubMed] [Google Scholar]
  31. Smith L. H. The medical aspects of urolithiasis: an overview. J Urol. 1989 Mar;141(3 Pt 2):707–710. doi: 10.1016/s0022-5347(17)40990-6. [DOI] [PubMed] [Google Scholar]
  32. Strauch M., Gretz N. Animal models to induce renal failure: a historical survey. Contrib Nephrol. 1988;60:1–8. doi: 10.1159/000414783. [DOI] [PubMed] [Google Scholar]
  33. Van Acker K. J., Simmonds H. A., Potter C., Cameron J. S. Complete deficiency of adenine phosphoribosyltransferase. Report of a family. N Engl J Med. 1977 Jul 21;297(3):127–132. doi: 10.1056/NEJM197707212970302. [DOI] [PubMed] [Google Scholar]
  34. WYNGAARDEN J. B., DUNN J. T. 8-Hydroxyadenine as the intermediate in the oxidation of adenine to 2, 8-dihydroxyadenine by xanthine oxidase. Arch Biochem Biophys. 1957 Jul;70(1):150–156. doi: 10.1016/0003-9861(57)90088-7. [DOI] [PubMed] [Google Scholar]
  35. Wakamiya M., Blackburn M. R., Jurecic R., McArthur M. J., Geske R. S., Cartwright J., Jr, Mitani K., Vaishnav S., Belmont J. W., Kellems R. E. Disruption of the adenosine deaminase gene causes hepatocellular impairment and perinatal lethality in mice. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3673–3677. doi: 10.1073/pnas.92.9.3673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Williams-Ashman H. G., Seidenfeld J., Galletti P. Trends in the biochemical pharmacology of 5'-deoxy-5'-methylthioadenosine. Biochem Pharmacol. 1982 Feb 1;31(3):277–288. doi: 10.1016/0006-2952(82)90171-x. [DOI] [PubMed] [Google Scholar]
  37. Wilson J. M., Daddona P. E., Simmonds H. A., Van Acker K. J., Kelley W. N. Human adenine phosphoribosyltransferase. Immunochemical quantitation and protein blot analysis of mutant forms of the enzyme. J Biol Chem. 1982 Feb 10;257(3):1508–1515. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES