Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Apr;75(4):1718–1721. doi: 10.1073/pnas.75.4.1718

Identification and properties of two methyltransferases in conversion of phosphatidylethanolamine to phosphatidylcholine.

F Hirata, O H Viveros, E J Diliberto Jr, J Axelrod
PMCID: PMC392410  PMID: 25437

Abstract

Two methyltransferases involved in the methylation of phosphatidylethanolamine to form phosphatidylcholine were demonstrated in a microsomal fraction of bovine adrenal medulla. The first methyltransferase catalyzes the methylation of phosphatidylethanolamine to form phosphatidyl-N-monomethylethanolamine. This enzyme has an optimum pH of 6.5, a low Km for S-adenosyl-L-methionine (1.4 micron), and an absolute requirement for Mg2+. The second methyltransferase catalyzes the two successive methylations of phodphatidyl-N-monomethylethanolamine to phosphatidyl-N,N-dimethylethanolamine and phosphatidylcholine. In contrast to the first methyltransferase, it has an optimum pH of 10 and a high Km for S-adenosyl-L-methionine (0.1 mM) and does not require Mg2+.

Full text

PDF
1718

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod J., Daly J. Pituitary gland: enzymic formation of methanol from S-adenosylmethionine. Science. 1965 Nov 12;150(3698):892–893. doi: 10.1126/science.150.3698.892. [DOI] [PubMed] [Google Scholar]
  2. Bergelson L. D., Barsukov L. I. Topological asymmetry of phospholipids in membranes. Science. 1977 Jul 15;197(4300):224–230. doi: 10.1126/science.327544. [DOI] [PubMed] [Google Scholar]
  3. Diliberto D. J., Jr, Veiveros O. H., Axelrod J. Subcellualr distribution of protein carboxymethylase and its endogenous substrates in the adrenal medulla: possible role in excitation-secretion coupling. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4050–4054. doi: 10.1073/pnas.73.11.4050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Diliberto E. J., Jr, Axelrod J. Regional and subcellular distribution of protein carboxymethylase in brain and other tissues. J Neurochem. 1976 Jun;26(6):1159–1165. doi: 10.1111/j.1471-4159.1976.tb07001.x. [DOI] [PubMed] [Google Scholar]
  5. GIBSON K. D., WILSON J. D., UDENFRIEND S. The enzymatic conversion of phospholipid ethanolamine to phospholipid choline in rat liver. J Biol Chem. 1961 Mar;236:673–679. [PubMed] [Google Scholar]
  6. KENNEDY E. P., WEISS S. B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem. 1956 Sep;222(1):193–214. [PubMed] [Google Scholar]
  7. Lester R. L., White D. C. Quantitative gas-liquid chromatographic analysis of ethanolamine, monomethyl ethanolamine, and dimethyl ethanolamine from lipids. J Lipid Res. 1967 Nov;8(6):565–568. [PubMed] [Google Scholar]
  8. REHBINDER D., GREENBERG D. M. STUDIES ON THE METHYLATION OF ETHANOLAMINE PHOSPHATIDES BY LIVER PREPARATIONS. Arch Biochem Biophys. 1965 Jan;109:110–115. doi: 10.1016/0003-9861(65)90294-8. [DOI] [PubMed] [Google Scholar]
  9. Scarborough G. A., Nyc J. F. Methylation of ethanolamine phosphatides by microsomes from normal and mutant strains of Neurospora crassa. J Biol Chem. 1967 Jan 25;242(2):238–242. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES