Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Apr;75(4):1820–1824. doi: 10.1073/pnas.75.4.1820

Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy

Klaus Weber 1, Peter C Rathke 1, Mary Osborn 1
PMCID: PMC392432  PMID: 417343

Abstract

Electron microscopy and indirect immunofluorescence microscopy using monospecific tubulin antibodies were performed in parallel on glutaraldehyde-fixed tissue culture cells without osmium fixation. In order to reduce the excess aldehyde groups of the strongly crosslinked cellular matrix, which normally interfere with subsequent immunofluorescence microscopy, a mild NaBH4 treatment was introduced during or after the dehydration steps. Cells processed through the NaBH4 step show, in transmission electron microscopy, normal cytoplasmic microtubules approximately 250 Å in diameter. When such cells are subjected to indirect immunofluorescence microscopy using monospecific tubulin antibody they reveal a complex system of unbroken, fine, fluorescent fibers traversing the cytoplasm between the perinuclear space and the plasma membrane. Thin sections of cells processed through the indirect immunofluorescence procedure show antibody-decorated microtubules with a diameter of approximately 600 Å. This decoration is not obtained when non-immune IgGs are used instead of monospecific antitubulin IgGs. Thus, a direct comparison of cytoplasmic microtubules in glutaraldehyde-fixed cells by both electron microscopy and immunofluorescence microscopy can be obtained.

Keywords: tubulin antibody, NaBH4, fixation procedures, actin, immunocytochemistry

Full text

PDF
1820

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brinkley B. R., Fuller E. M., Highfield D. P. Cytoplasmic microtubules in normal and transformed cells in culture: analysis by tubulin antibody immunofluorescence. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4981–4985. doi: 10.1073/pnas.72.12.4981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cande W. Z., Lazarides E., McIntosh J. R. A comparison of the distribution of actin and tubulin in the mammalian mitotic spindle as seen by indirect immunofluorescence. J Cell Biol. 1977 Mar;72(3):552–567. doi: 10.1083/jcb.72.3.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De Mey J., Hoebeke J., De Brabander M., Geuens G., Joniau M. Immunoperoxidase visualisation of microtubules and microtubular proteins. Nature. 1976 Nov 18;264(5583):273–275. doi: 10.1038/264273a0. [DOI] [PubMed] [Google Scholar]
  4. Forer A., Kalnins V. I., Zimmerman A. M. Spindle birefringence of isolated mitotic apparatus: further evidence for two birefringent spindle components. J Cell Sci. 1976 Oct;22(1):115–131. doi: 10.1242/jcs.22.1.115. [DOI] [PubMed] [Google Scholar]
  5. Franke W. W., Lüder M. R., Kartenbeck J., Zerban H., Keenan T. W. Involvement of vesicle coat material in casein secretion and surface regeneration. J Cell Biol. 1976 Apr;69(1):173–195. doi: 10.1083/jcb.69.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frankel F. R. Organization and energy-dependent growth of microtubules in cells. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2798–2802. doi: 10.1073/pnas.73.8.2798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lazarides E., Weber K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2268–2272. doi: 10.1073/pnas.71.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Luftig R. B., McMillan P. N., Weatherbee J. A., Weihing R. R. Increased visualization of microtubules by an improved fixation procedure. J Histochem Cytochem. 1977 Mar;25(3):175–187. doi: 10.1177/25.3.402414. [DOI] [PubMed] [Google Scholar]
  9. Osborn M., Franke W. W., Weber K. Visualization of a system of filaments 7-10 nm thick in cultured cells of an epithelioid line (Pt K2) by immunofluorescence microscopy. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2490–2494. doi: 10.1073/pnas.74.6.2490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Osborn M., Weber K. Cytoplasmic microtubules in tissue culture cells appear to grow from an organizing structure towards the plasma membrane. Proc Natl Acad Sci U S A. 1976 Mar;73(3):867–871. doi: 10.1073/pnas.73.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Osborn M., Weber K. The display of microtubules in transformed cells. Cell. 1977 Nov;12(3):561–571. doi: 10.1016/0092-8674(77)90257-4. [DOI] [PubMed] [Google Scholar]
  12. Osborn M., Weber K. Tubulin-specific antibody and the expression of microtubules in 3T3 cells after attachment to a substratum. Further evidence for the polar growth of cytoplasmic microtubules in vivo. Exp Cell Res. 1976 Dec;103(2):331–340. doi: 10.1016/0014-4827(76)90270-6. [DOI] [PubMed] [Google Scholar]
  13. Peters K., Richards F. M. Chemical cross-linking: reagents and problems in studies of membrane structure. Annu Rev Biochem. 1977;46:523–551. doi: 10.1146/annurev.bi.46.070177.002515. [DOI] [PubMed] [Google Scholar]
  14. Roberts K. Cytoplasmic microtubules and their functions. Prog Biophys Mol Biol. 1974;28:371–420. doi: 10.1016/0079-6107(74)90022-4. [DOI] [PubMed] [Google Scholar]
  15. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weber K., Bibring T., Osborn M. Specific visualization of tubulin-containing structures in tissue culture cells by immunofluorescence. Cytoplasmic microtubules, vinblastine-induced paracrystals, and mitotic figures. Exp Cell Res. 1975 Oct 1;95(1):111–120. doi: 10.1016/0014-4827(75)90615-1. [DOI] [PubMed] [Google Scholar]
  17. Weber K., Pollack R., Bibring T. Antibody against tuberlin: the specific visualization of cytoplasmic microtubules in tissue culture cells. Proc Natl Acad Sci U S A. 1975 Feb;72(2):459–463. doi: 10.1073/pnas.72.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Weber K., Rathke P. C., Osborn M., Franke W. W. Distribution of actin and tubulin in cells and in glycerinated cell models after treatment with cytochalasin B (CB). Exp Cell Res. 1976 Oct 15;102(2):285–297. doi: 10.1016/0014-4827(76)90044-6. [DOI] [PubMed] [Google Scholar]
  19. Weber K., Wehland J., Herzog W. Griseofulvin interacts with microtubules both in vivo and in vitro. J Mol Biol. 1976 Apr 25;102(4):817–829. doi: 10.1016/0022-2836(76)90293-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES