Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 May;75(5):2286–2290. doi: 10.1073/pnas.75.5.2286

Changes in the three-dimensional structure of concanavalin A upon demetallization

George N Reeke Jr 1, Joseph W Becker 1, Gerald M Edelman 1
PMCID: PMC392537  PMID: 276870

Abstract

When the Mn2+ and Ca2+ ions normally present in concanavalin A are removed, the protein becomes incapable of binding saccharides. To explore the structural differences between the native and demetallized forms and their effects on the saccharide-binding properties of the protein, we have refined and compared the crystal structures of both forms. Refinement, carried out by automated difference Fourier methods, has revealed a number of differences between the two structures as well as minor differences between the two crystallographically independent monomers in the demetallized structure. Significant differences between the holo- and apoproteins are confined to the region where the metals are bound. These differences include a reorganization and disordering of the loop, consisting of residues 7-25, that contains all of the direct metal ligands of the protein. In some molecules, the side chain of arginine-228 appears to move into the metal-binding region, possibly compensating in part for the absence of the metal's positive charge. The cis peptide observed in the native protein at alanine-207 is apparently not present in the demetallized protein. The conformational differences affect many of the residues currently thought to be involved in the specific binding of saccharides.

Keywords: x-ray crystallography, molecular replacement, refinement, metal-protein interactions, lectins

Full text

PDF
2286

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal B. B., Goldstein I. J. Protein-carbohydrate interactin. XV. The role of bivalent cations in concanavalin A-polysaccharide interaction. Can J Biochem. 1968 Sep;46(9):1147–1150. doi: 10.1139/o68-170. [DOI] [PubMed] [Google Scholar]
  2. Agrawal B. B., Goldstein I. J. Protein-carbohydrate interaction. VI. Isolation of concanavalin A by specific adsorption on cross-linked dextran gels. Biochim Biophys Acta. 1967 Oct 23;147(2):262–271. [PubMed] [Google Scholar]
  3. Becker J. W., Reeke G. N., Jr, Cunningham B. A., Edelman G. M. New evidence on the location of the saccharide-binding site of concanavalin A. Nature. 1976 Feb 5;259(5542):406–409. doi: 10.1038/259406a0. [DOI] [PubMed] [Google Scholar]
  4. Becker J. W., Reeke G. N., Jr, Wang J. L., Cunningham B. A., Edelman G. M. The covalent and three-dimensional structure of concanavalin A. III. Structure of the monomer and its interactions with metals and saccharides. J Biol Chem. 1975 Feb 25;250(4):1513–1524. [PubMed] [Google Scholar]
  5. Brewer C. F., Sternlicht H., Marcus D. M., Grollman A. P. Binding of 13 C-enriched -methyl-D-glucopyranoside to concanavalin A as studied by carbon magnetic resonance. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1007–1011. doi: 10.1073/pnas.70.4.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown R. D., 3rd, Brewer C. F., Koenig S. H. Conformation states of concanavalin A: kinetics of transitions induced by interaction with Mn2+ and Ca2+ ions. Biochemistry. 1977 Aug 23;16(17):3883–3896. doi: 10.1021/bi00636a026. [DOI] [PubMed] [Google Scholar]
  7. Cunningham B. A., Wang J. L., Pflumm M. N., Edelman G. M. Isolation and proteolytic cleavage of the intact subunit of concanavalin A. Biochemistry. 1972 Aug 15;11(17):3233–3239. doi: 10.1021/bi00767a016. [DOI] [PubMed] [Google Scholar]
  8. Edelman G. M., Cunningham B. A., Reeke G. N., Jr, Becker J. W., Waxdal M. J., Wang J. L. The covalent and three-dimensional structure of concanavalin A. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2580–2584. doi: 10.1073/pnas.69.9.2580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Freer S. T., Alden R. A., Carter C. W., Jr, Kraut J. Crystallographic structure refinement of Chromatium high potential iron protein at two Angstroms resolution. J Biol Chem. 1975 Jan 10;250(1):46–54. [PubMed] [Google Scholar]
  10. Grimaldi J. J., Sykes B. D. Concanavalin A: a stopped flow nuclear magnetic resonance study of conformational changes induced by Mn++, Ca++, and alpha-methyl-D-mannoside. J Biol Chem. 1975 Mar 10;250(5):1618–1624. [PubMed] [Google Scholar]
  11. Hardman K. D., Ainsworth C. F. Structure of concanavalin A at 2.4-A resolution. Biochemistry. 1972 Dec 19;11(26):4910–4919. doi: 10.1021/bi00776a006. [DOI] [PubMed] [Google Scholar]
  12. Hardman K. D., Ainsworth C. F. Structure of the concanavalin A-methyl alpha-D-mannopyranoside complex at 6-A resolution. Biochemistry. 1976 Mar 9;15(5):1120–1128. doi: 10.1021/bi00650a026. [DOI] [PubMed] [Google Scholar]
  13. Hardman K. D. Crystallography of a metal-containing protein, concanavalin A. Adv Exp Med Biol. 1973;40:103–123. doi: 10.1007/978-1-4684-3240-4_6. [DOI] [PubMed] [Google Scholar]
  14. Jack A., Weinierl J., Kalb A. J. An x-ray crystallographic study of demetallized concanavalin A. J Mol Biol. 1971 May 28;58(1):389–395. doi: 10.1016/0022-2836(71)90254-3. [DOI] [PubMed] [Google Scholar]
  15. Kalb A. J., Levitzki A. Metal-binding sites of concanavalin A and their role in the binding of alpha-methyl d-glucopyranoside. Biochem J. 1968 Oct;109(4):669–672. doi: 10.1042/bj1090669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McCubbin W. D., Oikawa K., Kay C. M. Circular dichroism studies on concanavalin A. Biochem Biophys Res Commun. 1971 May 7;43(3):666–674. doi: 10.1016/0006-291x(71)90666-8. [DOI] [PubMed] [Google Scholar]
  17. Pflumm M. N., Wang J. L., Edelman G. M. Conformational changes in concanavalin A. J Biol Chem. 1971 Jul 10;246(13):4369–4370. [PubMed] [Google Scholar]
  18. Reeke G. N., Jr, Becker J. W., Edelman G. M. The covalent and three-dimensional structure of concanavalin A. IV. Atomic coordinates, hydrogen bonding, and quaternary structure. J Biol Chem. 1975 Feb 25;250(4):1525–1547. [PubMed] [Google Scholar]
  19. Yariv J., Kalb A. J., Levitzki A. The interaction of concanavalin A with methyl alpha-D-glucopyranoside. Biochim Biophys Acta. 1968 Sep 3;165(2):303–305. doi: 10.1016/0304-4165(68)90063-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES