Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 May;75(5):2315–2319. doi: 10.1073/pnas.75.5.2315

Carbohydrate structure and cell differentitation: unique properties of fucosyl-glycopeptides isolated from embryonal carcinoma cells.

T Muramatsu, G Gachelin, J F Nicolas, H Condamine, H Jakob, F Jacob
PMCID: PMC392543  PMID: 276874

Abstract

From embryonal carcinoma cells labeled with fucose, two main classes of glycopeptide products of Pronase digestion can be distinguished by Sephadex G-50 column chromatography: one eluted near the excluded volume and a smaller one. The large fucosyl-glycopeptides are scarcely present in differentiated cells derived from embryonal carcinoma cells (i.e., fibroblastlike cells, myoblasts, and parietal yolk-sac carcinoma). During in vitro differentiation of embryonal carcinoma cells, these large glycopeptides disappear almost completely. The small glycopeptides were analyzed by paper electrophoresis, concanavalin A-Sepharose affinity chromatography, and digestion with an endoglycosidase. The major components of these glycopeptides from embryonal carcinoma cells appear to be different from complex glycopeptides known to occur in adult cells. The glycopeptide pattern of mouse preimplantation embryos resembles that of embryonal carcinoma cells. These results suggest that the carbohydrate profile changes fundamentally during early stages of mammalian development.

Full text

PDF
2315

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artzt K., Dubois P., Bennett D., Condamine H., Babinet C., Jacob F. Surface antigens common to mouse cleavage embryos and primitive teratocarcinoma cells in culture. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2988–2992. doi: 10.1073/pnas.70.10.2988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atkinson P. H., Summers D. F. Purification and properties of HeLa cell plasma membranes. J Biol Chem. 1971 Aug 25;246(16):5162–5175. [PubMed] [Google Scholar]
  3. Buck C. A., Glick M. C., Warren L. A comparative study of glycoproteins from the surface of control and Rous sarcoma virus transformed hamster cells. Biochemistry. 1970 Nov 10;9(23):4567–4576. doi: 10.1021/bi00825a016. [DOI] [PubMed] [Google Scholar]
  4. Gachelin G., Buc-Caron M. H., Lis H., Sharon N. Saccharides on teratocarcinoma cell plasma membranes. Their investigation with radioactively labelled lectins. Biochim Biophys Acta. 1976 Jul 15;436(4):825–832. doi: 10.1016/0005-2736(76)90409-0. [DOI] [PubMed] [Google Scholar]
  5. Gahmberg C. G. Proteins and glycoproteins of hamster kidney fibroblast (BHK21) plasma membranes and endoplasmic reticulum. Biochim Biophys Acta. 1971 Oct 12;249(1):81–95. doi: 10.1016/0005-2736(71)90085-x. [DOI] [PubMed] [Google Scholar]
  6. Glick M. C., Kimhi Y., Littauer U. Z. Glycopeptides from surface membranes of neuroblastoma cells. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1682–1687. doi: 10.1073/pnas.70.6.1682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hogan B., Fellous M., Avner P., Jacob F. Isolation of a human teratoma cell line which expresses F9 antigen. Nature. 1977 Dec 8;270(5637):515–518. doi: 10.1038/270515a0. [DOI] [PubMed] [Google Scholar]
  8. Jacob F. Mouse teratocarcinoma and embryonic antigens. Immunol Rev. 1977 Jan;33:3–32. doi: 10.1111/j.1600-065x.1977.tb00360.x. [DOI] [PubMed] [Google Scholar]
  9. Jakob H., Boon T., Gaillard J., Nicolas J., Jacob F. Tératocarcinome de la spuris: isolement, culture et propriétés de cellules a potentialités multiples. Ann Microbiol (Paris) 1973 Oct;124(3):269–282. [PubMed] [Google Scholar]
  10. Kaufman R. L., Ginsburg V. The metabolism of L-fucose by HeLa cells. Exp Cell Res. 1968 Apr;50(1):127–132. doi: 10.1016/0014-4827(68)90400-x. [DOI] [PubMed] [Google Scholar]
  11. Koide N., Muramatsu T. Endo-beta-N-acetylglucosaminidase acting on carbohydrate moieties of glycoproteins. Purification and properties of the enzyme from Diplococcus pneumoniae. J Biol Chem. 1974 Aug 10;249(15):4897–4904. [PubMed] [Google Scholar]
  12. Kornfeld R., Kornfeld S. Comparative aspects of glycoprotein structure. Annu Rev Biochem. 1976;45:217–237. doi: 10.1146/annurev.bi.45.070176.001245. [DOI] [PubMed] [Google Scholar]
  13. Lehman J. M., Speers W. C., Swartzendruber D. E., Pierce G. B. Neoplastic differentiation: characteristics of cell lines derived from a murine teratocarcinoma. J Cell Physiol. 1974 Aug;84(1):13–27. doi: 10.1002/jcp.1040840103. [DOI] [PubMed] [Google Scholar]
  14. Martin G. R. Teratocarcinomas as a model system for the study of embryogenesis and neoplasia. Cell. 1975 Jul;5(3):229–243. doi: 10.1016/0092-8674(75)90098-7. [DOI] [PubMed] [Google Scholar]
  15. McBurney M. W. Clonal lines of teratocarcinoma cells in vitro: differentiation and cytogenetic characteristics. J Cell Physiol. 1976 Nov;89(3):441–455. doi: 10.1002/jcp.1040890310. [DOI] [PubMed] [Google Scholar]
  16. Muramatsu T., Atkinson P. H., Nathenson S. G., Ceccarini C. Cell-surface glycopeptides: growth-dependent changes in the carbohydrate-peptide linkage region. J Mol Biol. 1973 Nov 15;80(4):781–799. doi: 10.1016/0022-2836(73)90210-6. [DOI] [PubMed] [Google Scholar]
  17. Muramatsu T., Nathenson S. G. Studies on the carbohydrate portion of membrane-located mouse H-2 alloantigens. Biochemistry. 1970 Dec 8;9(25):4875–4883. doi: 10.1021/bi00827a008. [DOI] [PubMed] [Google Scholar]
  18. Muramatsu T., Ogata M., Koide N. Approximately 70% of fucose-labeled glycopeptides from the cell surface and cellular material of rat. Biochim Biophys Acta. 1976 Aug 24;444(1):53–68. doi: 10.1016/0304-4165(76)90223-3. [DOI] [PubMed] [Google Scholar]
  19. Nicolas J. F., Avner P., Gaillard J., Guenet J. L., Jakob H., Jacob F. Cell lines derived from teratocarcinomas. Cancer Res. 1976 Nov;36(11 Pt 2):4224–4231. [PubMed] [Google Scholar]
  20. Nicolas J. F., Dubois P., Jakob H., Gaillard J., Jacob F. Tératocarcinome de la souris: différenciation en culture d'une lignée de cellules primitives a potentialités multiples. Ann Microbiol (Paris) 1975 Jan;126(1):3–22. [PubMed] [Google Scholar]
  21. Ogata S. I., Muramatsu T., Kobata A. New structural characteristic of the large glycopeptides from transformed cells. Nature. 1976 Feb 19;259(5544):580–582. doi: 10.1038/259580a0. [DOI] [PubMed] [Google Scholar]
  22. Ogata S., Muramatsu T., Kobata A. Fractionation of glycopeptides by affinity column chromatography on concanavalin A-sepharose. J Biochem. 1975 Oct;78(4):687–696. doi: 10.1093/oxfordjournals.jbchem.a130956. [DOI] [PubMed] [Google Scholar]
  23. Reisner Y., Gachelin G., Dubois P., Nicolas J. F., Sharon N., Jacob F. Interaction of peanut agglutinin, a lectin specific for nonreducing terminal D-galactosyl residues, with embryonal carcinoma cells. Dev Biol. 1977 Nov;61(1):20–27. doi: 10.1016/0012-1606(77)90338-4. [DOI] [PubMed] [Google Scholar]
  24. Whitten W. K., Biggers J. D. Complete development in vitro of the pre-implantation stages of the mouse in a simple chemically defined medium. J Reprod Fertil. 1968 Nov;17(2):399–401. doi: 10.1530/jrf.0.0170399. [DOI] [PubMed] [Google Scholar]
  25. van Beek W. P., Smets L. A., Emmelot P. Increased sialic acid density in surface glycoprotein of transformed and malignant cells--a general phenomenon? Cancer Res. 1973 Nov;33(11):2913–2922. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES