Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 May;75(5):2502–2506. doi: 10.1073/pnas.75.5.2502

Visualization of central noradrenergic neurons in thick sections by the unlabeled antibody method: a transmitter-specific Golgi image.

R Grzanna, M E Molliver, J T Coyle
PMCID: PMC392582  PMID: 353813

Abstract

The unlabeled peroxidase-antiperoxidase method has been used with an antiserum against rat dopamine-beta-hydroxylase (DBH) to obtain a three-dimensional image of noradrenergic cell bodies and their processes in thick Vibratome sections of rat brain. This method stains DBH-positive neurons exclusively with a result similar to that of the Golgi method, which makes it possible to analyze the geometric plan of these neurons and their projections in the central nervous system. In 100-micron sections, DBH-positive axons can be followed over long distances, and the results indicate that their distribution in cerebral and cerebellar cortex is not diffuse but has a strict geometric order.

Full text

PDF
2502

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chan-Palay V., Palay S. L. Ultrastructural identification of substance P cells and their processes in rat sensory ganglia and their terminals in the spinal cord by immunocytochemistry. Proc Natl Acad Sci U S A. 1977 Sep;74(9):4050–4054. doi: 10.1073/pnas.74.9.4050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Descarries L., Watkins K. C., Lapierre Y. Noradrenergic axon terminals in the cerebral cortex of rat. III. Topometric ultrastructural analysis. Brain Res. 1977 Sep 16;133(2):197–222. doi: 10.1016/0006-8993(77)90759-4. [DOI] [PubMed] [Google Scholar]
  3. Erlandsen S. L., Parsons J. A., Burke J. P., Redick J. A., Van Orden D. E., Van Orden L. S. A modification of the unlabeled antibody enzyme method using heterologous antisera for the light microscopic and ultrastructural localization of insulin, glucagon and growth hormone. J Histochem Cytochem. 1975 Sep;23(9):666–677. doi: 10.1177/23.9.1176760. [DOI] [PubMed] [Google Scholar]
  4. Freedman R., Foote S. L., Bloom F. E. Histochemical characterization of a neocortical projection of the nucleus locus coeruleus in the squirrel monkey. J Comp Neurol. 1975 Nov 15;164(2):209–231. doi: 10.1002/cne.901640205. [DOI] [PubMed] [Google Scholar]
  5. Geffen L. B., Livett B. G., Rush R. A. Immunohistochemical localizatio of protein components of catecholamine storage vesicles. J Physiol. 1969 Oct;204(3):593–605. doi: 10.1113/jphysiol.1969.sp008934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grzanna R., Coyle J. T. Rat adrenal dopamine-beta-hydroxylase: purification and immunologic characteristics. J Neurochem. 1976 Nov;27(5):1091–1096. doi: 10.1111/j.1471-4159.1976.tb00313.x. [DOI] [PubMed] [Google Scholar]
  7. Hartman B. K. Immunofluorescence of dopamine- -hydroxylase. Application of improved methodology to the localization of the peripheral and central noradrenergic nervous system. J Histochem Cytochem. 1973 Apr;21(4):312–332. doi: 10.1177/21.4.312. [DOI] [PubMed] [Google Scholar]
  8. Hökfelt T., Fuxe K., Goldstein M. Applications of immunohistochemistry to studies on monoamine cell systems with special reference to nervous tissues. Ann N Y Acad Sci. 1975 Jun 30;254:407–432. doi: 10.1111/j.1749-6632.1975.tb29192.x. [DOI] [PubMed] [Google Scholar]
  9. Kawarai Y., Nakane P. K. Localization of tissue antigens on the ultrathin sections with peroxidase-labeled antibody method. J Histochem Cytochem. 1970 Mar;18(3):161–166. doi: 10.1177/18.3.161. [DOI] [PubMed] [Google Scholar]
  10. Lieberman A. R. Comments on the fine structural organization of the dorsal lateral geniculate nucleus of the mouse. Anat Embryol (Berl) 1974;145(3):261–267. doi: 10.1007/BF00519637. [DOI] [PubMed] [Google Scholar]
  11. McLaughlin B. J., Barber R., Saito K., Roberts E., Wu J. Y. Immunocytochemical localization of glutamate decarboxylase in rat spinal cord. J Comp Neurol. 1975 Dec 1;164(3):305–321. doi: 10.1002/cne.901640304. [DOI] [PubMed] [Google Scholar]
  12. Raichle M. E., Hartman B. K., Eichling J. O., Sharpe L. G. Central noradrenergic regulation of cerebral blood flow and vascular permeability. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3726–3730. doi: 10.1073/pnas.72.9.3726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ramon-Moliner E. The locus coeruleus of cat. 3. Light and electron microscopic studies. Cell Tissue Res. 1974;149(2):205–221. doi: 10.1007/BF00222274. [DOI] [PubMed] [Google Scholar]
  14. Shepherd G. M. Physiological evidence for dendrodendritic synaptic interactions in the rabbit's olfactory glomerulus. Brain Res. 1971 Sep 10;32(1):212–217. doi: 10.1016/0006-8993(71)90168-5. [DOI] [PubMed] [Google Scholar]
  15. Sternberger L. A., Hardy P. H., Jr, Cuculis J. J., Meyer H. G. The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem. 1970 May;18(5):315–333. doi: 10.1177/18.5.315. [DOI] [PubMed] [Google Scholar]
  16. Swanson L. W. The locus coeruleus: a cytoarchitectonic, Golgi and immunohistochemical study in the albino rat. Brain Res. 1976 Jun 25;110(1):39–56. doi: 10.1016/0006-8993(76)90207-9. [DOI] [PubMed] [Google Scholar]
  17. de la Torre J. C. Evidence for central innervation of intracerebral blood vessels: local cerebral blood flow measurements and histofluorescence analysis by the sucrose-phosphate-glyoxylic acid (SPG) method. Neuroscience. 1976 Dec;1(6):455–457. doi: 10.1016/0306-4522(76)90096-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES