Abstract
Tritiated dopamine was used to label the dopamine receptor in membranes isolated from the rat corpus striatum. Scatchard analysis of displacement of [3H]dopamine by nonradioactive dopamine indicated the presence of two binding sites. The similarities in affinity, capacity, and drug specificity of the high-affinity site in the striatal membranes from rat and the binding site in the membranes from the calf caudate nucleus suggest that [3H]dopamine labels the same site in both species. In order to determine what conformation of dopamine is preferred at the dopamine receptor site, conformationally restricted analogs of dopamine--namely, the cis and trans 2-amino-1(3,4-dihydroxyphenyl)cyclobutane hydrochlorides--were tested for their affinity to the receptor. Compared to the cis conformation, the trans-restricted analogs had more affinity for the receptor site, indicating that dopamine probably interacts with the receptor in the trans conformation.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bergin R., Carlström D. The structure of the catecholamines. II. The crystal structure of dopamine hydrochloride. Acta Crystallogr B. 1968 Nov 15;24(11):1506–1510. doi: 10.1107/s0567740868004553. [DOI] [PubMed] [Google Scholar]
- Burt D. R., Creese I., Snyder S. H. Properties of [3H]haloperidol and [3H]dopamine binding associated with dopamine receptors in calf brain membranes. Mol Pharmacol. 1976 Sep;12(5):800–812. [PubMed] [Google Scholar]
- Cannon J. G. Chemistry of dopaminergic agonists. Adv Neurol. 1975;9:177–183. [PubMed] [Google Scholar]
- Cannon J. G., Kim J. C., Aleem M. A. Centrally acting emetics. 6. Derivatives of -naphthylamine and 2-indanamine. J Med Chem. 1972 Apr;15(4):348–350. doi: 10.1021/jm00274a003. [DOI] [PubMed] [Google Scholar]
- Costall B., Naylor R. J. Aporphines, 21. (1,2) Dopaminergic activity of aporphine and benzylisoquinoline derivatives. Synthesis of 8-hydroxyaporphines and 1-(hydroxybenzyl)-2-n-propyl-1,2,3,4-tetrahydroisoquinolines. J Med Chem. 1977 Feb;20(2):190–196. doi: 10.1021/jm00212a002. [DOI] [PubMed] [Google Scholar]
- Costall B., Naylor R. J., Cannon J. G., Lee T. Differential activation by some 2-aminotetralin derivatives of the receptor mechanisms in the nucleus accumbens of rats which mediate hyperactivity and stereotyped biting. Eur J Pharmacol. 1977 Feb 7;41(3):307–319. doi: 10.1016/0014-2999(77)90324-7. [DOI] [PubMed] [Google Scholar]
- Creese I., Burt D. R., Snyder S. H. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 1976 Apr 30;192(4238):481–483. doi: 10.1126/science.3854. [DOI] [PubMed] [Google Scholar]
- Hornykiewicz O. Psychopharmacological implications of dopamine and dopamine antagonists: a critical evaluation of current evidence. Annu Rev Pharmacol Toxicol. 1977;17:545–559. doi: 10.1146/annurev.pa.17.040177.002553. [DOI] [PubMed] [Google Scholar]
- Hornykiewicz O. The mechanisms of action of L-dopa in Parkinson's disease. Life Sci. 1974 Oct 1;15(7):1249–1259. doi: 10.1016/0024-3205(74)90306-3. [DOI] [PubMed] [Google Scholar]
- Klawans H. L., Jr The pharmacology of tardive dyskinesias. Am J Psychiatry. 1973 Jan;130(1):82–86. doi: 10.1176/ajp.130.1.82. [DOI] [PubMed] [Google Scholar]
- Klotz I. M., Hunston D. L. Properties of graphical representations of multiple classes of binding sites. Biochemistry. 1971 Aug 3;10(16):3065–3069. doi: 10.1021/bi00792a013. [DOI] [PubMed] [Google Scholar]
- Leysen J., Laduron P. Differential distribution of opiate and neuroleptic receptors and dopamine-sensitive adenylate cyclase in rat brain. Life Sci. 1977 Jan 15;20(2):281–288. doi: 10.1016/0024-3205(77)90323-x. [DOI] [PubMed] [Google Scholar]
- Miller R., Horn A., Iversen L., Pinder R. Effects of dopamine-like drugs on rat striatal adenyl cyclase have implications for CNS dopamine receptor topography. Nature. 1974 Jul 19;250(463):238–241. doi: 10.1038/250238a0. [DOI] [PubMed] [Google Scholar]
- Pardo J. V., Creese I., Burt D. R., Snyder S. H. Ontogenesis of dopamine receptor binding in the corpus striatum of the rat. Brain Res. 1977 Apr 15;125(2):376–382. doi: 10.1016/0006-8993(77)90633-3. [DOI] [PubMed] [Google Scholar]
- Patil P. N., Miller D. D., Trendelenburg U. Molecular geometry and adrenergic drug activity. Pharmacol Rev. 1974 Dec;26(4):323–392. [PubMed] [Google Scholar]
- Rekker R. F., Engel D. J., Nys G. G. Apomorphine and its dopamine-like action. J Pharm Pharmacol. 1972 Jul;24(7):589–591. doi: 10.1111/j.2042-7158.1972.tb09067.x. [DOI] [PubMed] [Google Scholar]
- Schoenfeld R. I., Neumeyer J. L., Dafeldecker W., Roffler-Tarlov S. Comparison of structural and stereoisomers of apomorphine on stereotyped behavior of the rat. Eur J Pharmacol. 1975 Jan;30(1):63–68. doi: 10.1016/0014-2999(75)90203-4. [DOI] [PubMed] [Google Scholar]
- Sheppard H., Burghardt C. R. Effect of tetrahydroisoquinoline derivatives on the adenylate cyclases of the caudate nucleus (dopamine-type) and erythrocyte (beta-type) of the rat. Res Commun Chem Pathol Pharmacol. 1974 Jul;8(3):527–534. [PubMed] [Google Scholar]
- Snyder S. H., Creese I., Burt D. R. The brain's dopamine receptor: labeling with (3H) dopamine and (3H) haloperidol. Psychopharmacol Commun. 1975;1(6):663–673. [PubMed] [Google Scholar]
- Vallner J. J., Perrin J. H., Wold S. Comparison of graphical and computerized methods for calculating binding parameters for two strongly bound drugs to human serum albumin. J Pharm Sci. 1976 Aug;65(8):1182–1187. doi: 10.1002/jps.2600650813. [DOI] [PubMed] [Google Scholar]
- Woodruff G. N., Watling K. J., Andrews C. D., Poat J. A., McDermed J. D. Dopamine receptors in rat striatum and nucleus accumbens; conformational studies using rigid analogues of dopamine. J Pharm Pharmacol. 1977 Jul;29(7):422–427. doi: 10.1111/j.2042-7158.1977.tb11357.x. [DOI] [PubMed] [Google Scholar]
