Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Jun;75(6):2654–2658. doi: 10.1073/pnas.75.6.2654

Elimination of cooperativity in aspartate transcarbamylase by nitration of a single tyrosine residue.

S M Landfear, D R Evans, W N Lipscomb
PMCID: PMC392621  PMID: 26914

Abstract

In a previous report [Landfear, S. M., Lipscomb, W. N. & Evans, D.R. (1978) J. Biol. Chem. 253, 3988--3996] we demonstrated that tetranitromethane can be employed to nitrate a limited number of tyrosine residues in aspartate transcarbamylase (carbamoylphosphate:L-aspartate carbamoyltransferase, EC 2.1.3.2); such modification eliminates cooperativity, feedback inhibition, and enzymatic activity, and reduces binding of the feedback inhibitor cytidine triphosphate. Cooperativity is lost more rapidly than other properties, and this loss correlates with the nitration of a single tyrosine residue. In this paper, we describe the saturation kinetics of hybrid species constructed from nitrated subunits of one type (either catalytic or regulatory) and native subunits of the other type. We conclude that the modification responsible for loss of cooperativity is on the catalytic subunit. The tryptic peptide containing this modification has been isolated and identified.

Full text

PDF
2654

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buckman T. Spin-labeling studies of aspartate transcarbamylase. I. Effects of nucleotide binding and subunit separation. Biochemistry. 1970 Aug 4;9(16):3255–3265. doi: 10.1021/bi00818a020. [DOI] [PubMed] [Google Scholar]
  2. Davies G. E., Vanaman T. C., Stark G. R. Aspartate transcarbamylase. Stereospecific restrictions on the binding site for L-aspartate. J Biol Chem. 1970 Mar 10;245(5):1175–1179. [PubMed] [Google Scholar]
  3. Doyle R. J., Bello J., Roholt O. A. Probable protein crosslinking with tetranitromethane. Biochim Biophys Acta. 1968 Jun 26;160(2):274–276. doi: 10.1016/0005-2795(68)90103-7. [DOI] [PubMed] [Google Scholar]
  4. Evans D. R., Warren S. G., Edwards B. F., McMurray C. H., Bethge P. H., Wiley D. C., Lipscomb W. N. Aqueous central cavity in aspartate transcarbamylase from Escherichia coli. Science. 1973 Feb 16;179(4074):683–685. doi: 10.1126/science.179.4074.683. [DOI] [PubMed] [Google Scholar]
  5. GERHART J. C., PARDEE A. B. The enzymology of control by feedback inhibition. J Biol Chem. 1962 Mar;237:891–896. [PubMed] [Google Scholar]
  6. Gerhart J. C., Schachman H. K. Distinct subunits for the regulation and catalytic activity of aspartate transcarbamylase. Biochemistry. 1965 Jun;4(6):1054–1062. doi: 10.1021/bi00882a012. [DOI] [PubMed] [Google Scholar]
  7. Griffin J. H., Rosenbusch J. P., Blout E. R., Weber K. K. Conformational changes in aspartate transcarbamylase. II. Circular dichroism evidence for the involvement of metal ions in allosteric interactions. J Biol Chem. 1973 Jul 25;248(14):5057–5062. [PubMed] [Google Scholar]
  8. Hammes G. G., Wu C. W. Regulation of enzyme activity. The activity of enzymes can be controlled by a multiplicity of conformational equilibria. Science. 1971 Jun 18;172(3989):1205–1211. doi: 10.1126/science.172.3989.1205. [DOI] [PubMed] [Google Scholar]
  9. Jacobson G. R., Stark G. R. Aspartate transcarbamylase of Escherichia coli. Mechanisms of inhibition and activation by dicarboxylic acids and other anions. J Biol Chem. 1975 Sep 10;250(17):6852–6860. [PubMed] [Google Scholar]
  10. Kantrowitz E. R., Lipscomb W. N. Functionally important arginine residues of aspartate transcarbamylase. J Biol Chem. 1977 May 10;252(9):2873–2880. [PubMed] [Google Scholar]
  11. Kerbiriou D., Hervé G. An aspartate transcarbamylase lacking catalytic subunit interactions. II. Regulatory subunits are responsible for the lack of co-operative interactions between catalytic sites. Drastic feedback inhibition does not restore these interactions. J Mol Biol. 1973 Aug 25;78(4):687–702. doi: 10.1016/0022-2836(73)90289-1. [DOI] [PubMed] [Google Scholar]
  12. Kerbiriou D., Hervé G. Biosynthesis of an aspartate transcarbamylase lacking co-operative interactions. I. Disconnection of homotropic and heterotropic interactions under the influence of 2-thiouracil. J Mol Biol. 1972 Mar 14;64(2):379–392. doi: 10.1016/0022-2836(72)90505-0. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Landfear S. M., Lipscomb W. N., Evans D. R. Functional modifications of aspartate transcarbamylase induced by nitration with tetranitromethane. J Biol Chem. 1978 Jun 10;253(11):3988–3996. [PubMed] [Google Scholar]
  15. Meighen E. A., Pigiet V., Schachman H. K. Hybridization of native and chemically modified enzymes. 3. The catalytic subunits of aspartate transcarbamylase. Proc Natl Acad Sci U S A. 1970 Jan;65(1):234–241. doi: 10.1073/pnas.65.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PARDEE A. B., YATES R. A. Control of pyrimidine biosynthesis in Escherichia coli by a feed-back mechanism. J Biol Chem. 1956 Aug;221(2):757–770. [PubMed] [Google Scholar]
  17. Riordan J. F., Sokolovsky M. Reduction of nitrotyrosyl residues in proteins. Biochim Biophys Acta. 1971 Apr 27;236(1):161–163. doi: 10.1016/0005-2795(71)90160-7. [DOI] [PubMed] [Google Scholar]
  18. Rosenbusch J. P., Weber K. Subunit structure of aspartate transcarbamylase from Escherichia coli. J Biol Chem. 1971 Mar 25;246(6):1644–1657. [PubMed] [Google Scholar]
  19. Sauer R. T., Niall H. D., Hogan M. L., Keutmann H. T., O'Riordan J. L., Potts J. T., Jr The amino acid sequence of porcine parathyroid hormone. Biochemistry. 1974 Apr 23;13(9):1994–1999. doi: 10.1021/bi00706a033. [DOI] [PubMed] [Google Scholar]
  20. Sokolovsky M., Riordan J. F., Vallee B. L. Conversion of 3-nitrotyrosine to 3-aminotyrosine in peptides and proteins. Biochem Biophys Res Commun. 1967 Apr 7;27(1):20–25. doi: 10.1016/s0006-291x(67)80033-0. [DOI] [PubMed] [Google Scholar]
  21. Sokolovsky M., Riordan J. F., Vallee B. L. Tetranitromethane. A reagent for the nitration of tyrosyl residues in proteins. Biochemistry. 1966 Nov;5(11):3582–3589. doi: 10.1021/bi00875a029. [DOI] [PubMed] [Google Scholar]
  22. Summers M. R., Smythers G. W., Oroszlan S. Thin-layer chromatography of sub-nanomole amounts of phenylthiohydantoin (PTH) amino acids on polyamide sheets. Anal Biochem. 1973 Jun;53(2):624–628. doi: 10.1016/0003-2697(73)90114-0. [DOI] [PubMed] [Google Scholar]
  23. Warren S. G., Edwards B. F., Evans D. R., Wiley D. C., Lipscomb W. N. Aspartate transcarbamoylase from Escherichia coli: electron density at 5.5 A resolution. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1117–1121. doi: 10.1073/pnas.70.4.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weber K. New structural model of E. coli aspartate transcarbamylase and the amino-acid sequence of the regulatory polypeptide chain. Nature. 1968 Jun 22;218(5147):1116–1119. doi: 10.1038/2181116a0. [DOI] [PubMed] [Google Scholar]
  25. Weiner A. M., Platt T., Weber K. Amino-terminal sequence analysis of proteins purified on a nanomole scale by gel electrophoresis. J Biol Chem. 1972 May 25;247(10):3242–3251. [PubMed] [Google Scholar]
  26. Wiley D. C., Evans D. R., Warren S. G., McMurray C. H., Edwards B. F., Franks W. A., Lipscomb W. N. The 5.5 Angstrom resolution structure of the regulatory enzyme, asparate transcarbamylase. Cold Spring Harb Symp Quant Biol. 1972;36:285–290. doi: 10.1101/sqb.1972.036.01.038. [DOI] [PubMed] [Google Scholar]
  27. Wiley D. C., Lipscomb W. N. Crystallographic determination of symmetry of aspartate transcarbamylase. Nature. 1968 Jun 22;218(5147):1119–1121. doi: 10.1038/2181119a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES