Abstract
The physical stability of pharmaceutical proteins in delivery environments is a critical determinant of biological potency and treatment efficacy, and yet it is often taken for granted. We studied both the bioactivity and physical stability of interleukin 2 upon delivery via continuous infusion. We found that the biological activity of the delivered protein was dramatically reduced by approximately 90% after a 24-hr infusion program. Only a portion of these losses could be attributed to direct protein deposition on the delivery surfaces. Analysis of delivered protein by size exclusion chromatography gave no indication of insulin-like, surface-induced aggregation phenomena. Examination of the secondary and tertiary structure of both adsorbed and delivered protein via Fourier-transform infrared spectroscopy, circular dichroism, and fluorescence spectroscopy indicated that transient surface association of interleukin 2 with the catheter tubing resulted in profound, irreversible structural changes that were responsible for the majority of the biological activity losses.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arakawa T., Boone T., Davis J. M., Kenney W. C. Structure of unfolded and refolded recombinant derived [Ala125]interleukin 2. Biochemistry. 1986 Dec 16;25(25):8274–8277. doi: 10.1021/bi00373a022. [DOI] [PubMed] [Google Scholar]
- Brandhuber B. J., Boone T., Kenney W. C., McKay D. B. Three-dimensional structure of interleukin-2. Science. 1987 Dec 18;238(4834):1707–1709. doi: 10.1126/science.3500515. [DOI] [PubMed] [Google Scholar]
- Browning J. L., Mattaliano R. J., Chow E. P., Liang S. M., Allet B., Rosa J., Smart J. E. Disulfide scrambling of interleukin-2: HPLC resolution of the three possible isomers. Anal Biochem. 1986 May 15;155(1):123–128. doi: 10.1016/0003-2697(86)90236-8. [DOI] [PubMed] [Google Scholar]
- Cohen F. E., Kosen P. A., Kuntz I. D., Epstein L. B., Ciardelli T. L., Smith K. A. Structure-activity studies of interleukin-2. Science. 1986 Oct 17;234(4774):349–352. doi: 10.1126/science.3489989. [DOI] [PubMed] [Google Scholar]
- Dryden D., Weir M. P. Evidence for an acid-induced molten-globule state in interleukin-2; a fluorescence and circular dichroism study. Biochim Biophys Acta. 1991 May 30;1078(1):94–100. doi: 10.1016/0167-4838(91)90097-j. [DOI] [PubMed] [Google Scholar]
- Eftink M. R., Ghiron C. A. Fluorescence quenching studies with proteins. Anal Biochem. 1981 Jul 1;114(2):199–227. doi: 10.1016/0003-2697(81)90474-7. [DOI] [PubMed] [Google Scholar]
- Gavish B., Gratton E., Hardy C. J. Adiabatic compressibility of globular proteins. Proc Natl Acad Sci U S A. 1983 Feb;80(3):750–754. doi: 10.1073/pnas.80.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gekko K., Hasegawa Y. Compressibility-structure relationship of globular proteins. Biochemistry. 1986 Oct 21;25(21):6563–6571. doi: 10.1021/bi00369a034. [DOI] [PubMed] [Google Scholar]
- Havel H. A., Kauffman E. W., Elzinga P. A. Fluorescence quenching studies of bovine growth hormone in several conformational states. Biochim Biophys Acta. 1988 Jul 20;955(2):154–163. doi: 10.1016/0167-4838(88)90189-6. [DOI] [PubMed] [Google Scholar]
- Hora M. S., Rana R. K., Wilcox C. L., Katre N. V., Hirtzer P., Wolfe S. N., Thomson J. W. Development of a lyophilized formulation of interleukin-2. Dev Biol Stand. 1992;74:295–306. [PubMed] [Google Scholar]
- Kondo A., Murakami F., Kawagoe M., Higashitani K. Kinetic and circular dichroism studies of enzymes adsorbed on ultrafine silica particles. Appl Microbiol Biotechnol. 1993 Aug;39(6):726–731. doi: 10.1007/BF00164457. [DOI] [PubMed] [Google Scholar]
- Kunitani M., Hirtzer P., Johnson D., Halenbeck R., Boosman A., Koths K. Reversed-phase chromatography of interleukin-2 muteins. J Chromatogr. 1986 May 30;359:391–402. doi: 10.1016/0021-9673(86)80093-0. [DOI] [PubMed] [Google Scholar]
- Landgraf B., Cohen F. E., Smith K. A., Gadski R., Ciardelli T. L. Structural significance of the C-terminal amphiphilic helix of interleukin-2. J Biol Chem. 1989 Jan 15;264(2):816–822. [PubMed] [Google Scholar]
- Lehrer S. S., Leavis P. C. Solute quenching of protein fluorescence. Methods Enzymol. 1978;49:222–236. doi: 10.1016/s0076-6879(78)49012-3. [DOI] [PubMed] [Google Scholar]
- Manning M. C., Patel K., Borchardt R. T. Stability of protein pharmaceuticals. Pharm Res. 1989 Nov;6(11):903–918. doi: 10.1023/a:1015929109894. [DOI] [PubMed] [Google Scholar]
- Sluzky V., Tamada J. A., Klibanov A. M., Langer R. Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9377–9381. doi: 10.1073/pnas.88.21.9377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sreerama N., Woody R. W. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem. 1993 Feb 15;209(1):32–44. doi: 10.1006/abio.1993.1079. [DOI] [PubMed] [Google Scholar]
- Thomas C. R., Nienow A. W., Dunnill P. Action of shear on enzymes: studies with alcohol dehydrogenase. Biotechnol Bioeng. 1979 Dec;21(12):2263–2278. doi: 10.1002/bit.260211208. [DOI] [PubMed] [Google Scholar]
- Visor G. C., Tsai K. P., Duffy J., Miller M. D., Calderwood T., Knepp V. M. Quantitative evaluation of the stability and delivery of interleukin-1B by infusion. J Parenter Sci Technol. 1990 May-Jun;44(3):130–132. [PubMed] [Google Scholar]
- Vlasveld L. T., Beijnen J. H., Sein J. J., Rankin E. M., Melief C. J., Hekman A. Reconstitution of recombinant interleukin-2 (rIL-2): a comparative study of various rIL-2 muteins. Eur J Cancer. 1993;29A(14):1977–1979. doi: 10.1016/0959-8049(93)90456-p. [DOI] [PubMed] [Google Scholar]
- Weir M. P., Chaplin M. A., Wallace D. M., Dykes C. W., Hobden A. N. Structure-activity relationships of recombinant human interleukin 2. Biochemistry. 1988 Sep 6;27(18):6883–6892. doi: 10.1021/bi00418a034. [DOI] [PubMed] [Google Scholar]