Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Jun;75(6):2986–2990. doi: 10.1073/pnas.75.6.2986

Ontogenetic appearance and disappearance of tyrosine hydroxylase and catecholamines in the rat embryo.

P Cochard, M Goldstein, I B Black
PMCID: PMC392692  PMID: 26919

Abstract

The ontogenetic pattern of noradrenergic differentiation in rat embryonic autonomic neuroblasts was defined in vivo. Noradrenergic specialization was examined by documenting the immunohistochemical appearance of tyrosine hydroxylase [Tyr-OH; tyrosine 3-monooxygenase; L-tyrosine,-tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating), EC 1.14.16.2] and the development of histofluorescence due to catecholamine (CA). Tyr-OH and CA were undetectable in the dorsal neural crest or the ventrally migrating crest cells and first appeared at 12.5 days of gestation (36--37 somite stage) in sympathoblasts that had formed sympathetic ganglion primordia. Fluorescence intensity and the number of fluorescent cells increased progressively thereafter. In addition, Tyr-OH and CA transiently appeared in scattered presumptive neuroblasts in the gut. The enzyme and transmitter were first detectable at 11.5 days of gestation and thereafter decreased progressively so that, by 14.5 days, only rare cells were encountered. There was remarkable synchrony in the appearance and disappearance of Tyr-OH and CA. These observations suggest that a number of noradrenergic transmitter mechanisms develop simultaneously in the differentiating neuroblast. The relevance of these results to the elucidation of developmental regulatory mechanisms is discussed.

Full text

PDF
2986

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan I. J., Newgreen D. F. Catecholamine accumulation in neural crest cells and the primary sympathetic chain. Am J Anat. 1977 Jul;149(3):413–421. doi: 10.1002/aja.1001490306. [DOI] [PubMed] [Google Scholar]
  2. Black I. B., Geen S. C. Trans-synaptic regulation of adrenergic neuron development: inhibition by ganglionic blockade. Brain Res. 1973 Dec 7;63:291–302. doi: 10.1016/0006-8993(73)90096-6. [DOI] [PubMed] [Google Scholar]
  3. Black I. B., Hendry I. A., Iversen L. L. Effects of surgical decentralization and nerve growth factor on the maturation of adrenergic neurons in a mouse sympathetic ganglion. J Neurochem. 1972 May;19(5):1367–1377. doi: 10.1111/j.1471-4159.1972.tb01461.x. [DOI] [PubMed] [Google Scholar]
  4. Black I. B., Hendry I. A., Iversen L. L. Trans-synaptic regulation of growth and development of adrenergic neurones in a mouse sympathetic ganglion. Brain Res. 1971 Nov;34(2):229–240. doi: 10.1016/0006-8993(71)90278-2. [DOI] [PubMed] [Google Scholar]
  5. Black I. B., Hendry I., Iversen L. L. Differences in the regulation of tyrosine hydroxylase and dopa decarboxylase in sympathetic ganglia and adrenals. Nat New Biol. 1971 May 5;231(18):27–29. [PubMed] [Google Scholar]
  6. Black I. B., Joh T. H., Reis D. J. Accumulation of tyrosine hydroxylase molecules during growth and development of the superior cervical ganglion. Brain Res. 1974 Jul 19;75(1):133–144. doi: 10.1016/0006-8993(74)90775-6. [DOI] [PubMed] [Google Scholar]
  7. Black I. B., Mytilineou C. Trans-synaptic regulation of the development of end organ innervation by sympathetic neurons. Brain Res. 1976 Jan 23;101(3):503–521. doi: 10.1016/0006-8993(76)90474-1. [DOI] [PubMed] [Google Scholar]
  8. Cohen A. M. Factors directing the expression of sympathetic nerve traits in cells of neural crest origin. J Exp Zool. 1972 Feb;179(2):167–182. doi: 10.1002/jez.1401790204. [DOI] [PubMed] [Google Scholar]
  9. Cohen A. M. Independent expression of the adrenergic phenotype by neural crest cells in vitro. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2899–2903. doi: 10.1073/pnas.74.7.2899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Champlain J., Malmfors T., Olson L., Sachs C. Ontogenesis of peripheral adrenergic neurons in the rat: pre- and postnatal observations. Acta Physiol Scand. 1970 Oct;80(2):276–288. doi: 10.1111/j.1748-1716.1970.tb04791.x. [DOI] [PubMed] [Google Scholar]
  11. Furshpan E. J., MacLeish P. R., O'Lague P. H., Potter D. D. Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: evidence for cholinergic, adrenergic, and dual-function neurons. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4225–4229. doi: 10.1073/pnas.73.11.4225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hartman B. K. Immunofluorescence of dopamine- -hydroxylase. Application of improved methodology to the localization of the peripheral and central noradrenergic nervous system. J Histochem Cytochem. 1973 Apr;21(4):312–332. doi: 10.1177/21.4.312. [DOI] [PubMed] [Google Scholar]
  13. Ignarro L. J., Shideman F. E. Appearance and concentrations of catecholamines and their biosynthesis in the embryonic and developing chick. J Pharmacol Exp Ther. 1968 Jan;159(1):38–48. [PubMed] [Google Scholar]
  14. Korn L. J., Vacquier V. D., Epel D. Further studies on the glucose inhibition of beta-1,3-glucanohydrolase increase during gut differentiation of sand dollar larvae. Dev Biol. 1974 Jan;36(1):1–7. doi: 10.1016/0012-1606(74)90186-9. [DOI] [PubMed] [Google Scholar]
  15. LEVITT M., SPECTOR S., SJOERDSMA A., UDENFRIEND S. ELUCIDATION OF THE RATE-LIMITING STEP IN NOREPINEPHRINE BIOSYNTHESIS IN THE PERFUSED GUINEA-PIG HEART. J Pharmacol Exp Ther. 1965 Apr;148:1–8. [PubMed] [Google Scholar]
  16. Le Douarin N. M., Renaud D., Teillet M. A., Le Douarin G. H. Cholinergic differentiation of presumptive adrenergic neuroblasts in interspecific chimeras after heterotopic transplantations. Proc Natl Acad Sci U S A. 1975 Feb;72(2):728–732. doi: 10.1073/pnas.72.2.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Le Douarin N. M., Teillet M. A. Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neurectodermal mesenchymal derivatives, using a biological cell marking technique. Dev Biol. 1974 Nov;41(1):162–184. doi: 10.1016/0012-1606(74)90291-7. [DOI] [PubMed] [Google Scholar]
  18. Le Lièvre C. S., Le Douarin N. M. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol. 1975 Aug;34(1):125–154. [PubMed] [Google Scholar]
  19. Levi-Montalcini R., Angeletti P. U. Nerve growth factor. Physiol Rev. 1968 Jul;48(3):534–569. doi: 10.1152/physrev.1968.48.3.534. [DOI] [PubMed] [Google Scholar]
  20. Mazurkiewicz J. E., Nakane P. K. Light and electron microscopic localization of antigens in tissues embedded in polyethylene glycol with a peroxidase labeled antibody method. J Histochem Cytochem. 1972 Dec;20(12):969–974. doi: 10.1177/20.12.969. [DOI] [PubMed] [Google Scholar]
  21. Norr S. C. In vitro analysis of sympathetic neuron differentiation from chick neural crest cells. Dev Biol. 1973 Sep;34(1):16–38. doi: 10.1016/0012-1606(73)90336-9. [DOI] [PubMed] [Google Scholar]
  22. Park D. H., Goldstein M. Purification of tyrosine hydroxylase from pheochromocytoma tumors. Life Sci. 1976 Jan 1;18(1):55–60. doi: 10.1016/0024-3205(76)90273-3. [DOI] [PubMed] [Google Scholar]
  23. Patterson P. H., Chun L. L. The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. I. Effects of conditioned medium. Dev Biol. 1977 Apr;56(2):263–280. doi: 10.1016/0012-1606(77)90269-x. [DOI] [PubMed] [Google Scholar]
  24. Smith J., Cochard P., Le Douarin N. M. Development of choline acetyltransferase and cholinesterase activities in enteric ganglia derives from presumptive adrenergic and cholinergic levels of the neural crest. Cell Differ. 1977 Oct;6(3-4):199–216. doi: 10.1016/0045-6039(77)90016-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES