Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Jul;75(7):3085–3089. doi: 10.1073/pnas.75.7.3085

Synthetic peptide derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers

Andrew P Laudano 1, Russell F Doolittle 1
PMCID: PMC392718  PMID: 277910

Abstract

A series of small peptides corresponding to the amino termini of the fibrin α- and β-chains has been synthesized. The peptides glycyl-L-prolyl-L-arginyl-L-proline and glycyl-L-prolyl-L-arginylsarcosine are potent inhibitors of fibrin polymerization. Moreover, these peptides have a natural stability stemming from their inherent resistance to proteolysis because of the involvement of amino acids in each of their peptide bonds. The peptide glycyl-L-prolyl-L-arginyl-L-proline binds to fibrinogen and to fragment D, in both cases with an association constant of approximately 5 × 104; it does not bind to fragment E. The number of binding sites is two for fibrinogen and one for fragment D. The tripeptide glycyl-L-prolyl-L-arginine binds less tightly and is less than half as effective in preventing polymerization. The peptide glycyl-L-histidyl-L-arginyl-L-proline, which corresponds exactly to the amino terminus of the fibrin β-chain, does not inhibit the aggregation of fibrin monomers under the conditions used. It does bind weakly to fibrinogen, however, suggesting the involvement of sites other than those binding the α-chain analogues. Various other peptides were found not to inhibit polymerization; these included glycine-L-proline, L-prolyl-L-arginine and glycyl-L-prolyl-L-seryl-L-proline. The last-named corresponds to the serine/arginine amino acid replacement previously reported for a defective human fibrinogen.

Keywords: intermolecular contact sites, protein-ligand interactions

Full text

PDF
3085

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAILEY K., BETTELHEIM F. R., LORAND L., MIDDLEBROOK W. R. Action of thrombin in the clotting of fibrinogen. Nature. 1951 Feb 10;167(4241):233–234. doi: 10.1038/167233a0. [DOI] [PubMed] [Google Scholar]
  2. BETTELHEIM F. R., BAILEY K. The products of the action of thrombin on fibrinogen. Biochim Biophys Acta. 1952 Nov;9(5):578–579. doi: 10.1016/0006-3002(52)90213-8. [DOI] [PubMed] [Google Scholar]
  3. Birken S., Wilner G. D., Canfield R. E. Studies of the structure of canine fibrinogen. Thromb Res. 1975 Oct;7(4):599–610. doi: 10.1016/0049-3848(75)90106-1. [DOI] [PubMed] [Google Scholar]
  4. Blombäck B., Blombäck M., Henschen A., Hessel B., Iwanaga S., Woods K. R. N-terminal disulphide knot of human fibrinogen. Nature. 1968 Apr 13;218(5137):130–134. doi: 10.1038/218130a0. [DOI] [PubMed] [Google Scholar]
  5. Blombäck B., Blombäck M. The molecular structure of fibrinogen. Ann N Y Acad Sci. 1972 Dec 8;202:77–97. doi: 10.1111/j.1749-6632.1972.tb16323.x. [DOI] [PubMed] [Google Scholar]
  6. Blombäck M., Blombäck B., Mammen E. F., Prasad A. S. Fibrinogen Detroit--a molecular defect in the N-terminal disulphide knot of human fibrinogen? Nature. 1968 Apr 13;218(5137):134–137. doi: 10.1038/218134a0. [DOI] [PubMed] [Google Scholar]
  7. Cottrell B. A., Doolittle R. F. Amino acid sequences of lamprey fibrinopeptides A and B and characterizations of the junctions split by lamprey and mammalian thrombins. Biochim Biophys Acta. 1976 Dec 22;453(2):426–438. doi: 10.1016/0005-2795(76)90138-0. [DOI] [PubMed] [Google Scholar]
  8. DONNELLY T. H., LASKOWSKI M., Jr, NOTLEY N., SCHERAGA H. A. Equilibria in the fibrinogen-fibrin conversion. II. Reversibility of the polymerization steps. Arch Biochem Biophys. 1955 Jun;56(2):369–387. doi: 10.1016/0003-9861(55)90258-7. [DOI] [PubMed] [Google Scholar]
  9. DOOLITTLE R. F. DIFFERENCES IN THE CLOTTING OF LAMPREY FIBRINOGEN BY LAMPREY AND BOVINE THROMBINS. Biochem J. 1965 Mar;94:735–741. doi: 10.1042/bj0940735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doolittle R. F., Cassman K. G., Cottrell B. A., Friezner S. J., Takagi T. Amino acid sequence studies on the alpha chain of human fibrinogen. Covalent structure of the alpha-chain portion of fragment D. Biochemistry. 1977 Apr 19;16(8):1710–1715. doi: 10.1021/bi00627a029. [DOI] [PubMed] [Google Scholar]
  11. Doolittle R. F., Schubert D., Schwartz S. A. Amino acid sequence studies on artiodactyl fibrinopeptides. I. Dromedary camel, mule deer, and cape buffalo. Arch Biochem Biophys. 1967 Feb;118(2):456–467. doi: 10.1016/0003-9861(67)90374-8. [DOI] [PubMed] [Google Scholar]
  12. Doolittle R. F. Structural aspects of the fibrinogen to fibrin conversion. Adv Protein Chem. 1973;27:1–109. doi: 10.1016/s0065-3233(08)60446-5. [DOI] [PubMed] [Google Scholar]
  13. HALL C. E., SLAYTER H. S. The fibrinogen molecule: its size, shape, and mode of polymerization. J Biophys Biochem Cytol. 1959 Jan 25;5(1):11–16. doi: 10.1083/jcb.5.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iwanaga S., Wallén P., Gröndahl N. J., Henschan A., Blombäck B. Isolation and characterization of N-terminal fragments obtained by plasmin digestion of human fibrinogen. Biochim Biophys Acta. 1967 Dec 12;147(3):606–609. doi: 10.1016/0005-2795(67)90025-6. [DOI] [PubMed] [Google Scholar]
  15. Kudryk B. J., Collen D., Woods K. R., Blombäck B. Evidence for localization of polymerization sites in fibrinogen. J Biol Chem. 1974 May 25;249(10):3322–3325. [PubMed] [Google Scholar]
  16. LATALLO Z. S., FLETCHER A. P., ALKJAERSIG N., SHERRY S. Influence of pH, ionic strength, neutral ions, and thrombin on fibrin polymerization. Am J Physiol. 1962 Apr;202:675–680. doi: 10.1152/ajplegacy.1962.202.4.675. [DOI] [PubMed] [Google Scholar]
  17. Mammen E. F., Prasad A. S., Barnhart M. I., Au C. C. Congenital dysfibrinogenemia: fibrinogen Detroit. J Clin Invest. 1969 Feb;48(2):235–249. doi: 10.1172/JCI105980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Marder V. J. Identification and purification of fibrinogen degradation products produced by plasmin: considerations on the structure of fibrinogen. Scand J Haematol Suppl. 1971;13:21–36. doi: 10.1111/j.1600-0609.1971.tb01981.x. [DOI] [PubMed] [Google Scholar]
  19. Marder V. J., Shulman N. R., Carroll W. R. High molecular weight derivatives of human fibrinogen produced by plasmin. I. Physicochemical and immunological characterization. J Biol Chem. 1969 Apr 25;244(8):2111–2119. [PubMed] [Google Scholar]
  20. Murano G., Walz D., Williams L., Pindyck J., Mosesson M. W. Primary structure of the amino terminal regions of chicken fibrin chains. Thromb Res. 1977 Jul;11(1):1–10. doi: 10.1016/0049-3848(77)90063-9. [DOI] [PubMed] [Google Scholar]
  21. NUSSENZWEIG V., SELIGMANN M., PELMONT J., GRABAR P. [The products of degradation of human fibrinogen by plasmin. I. Separation and physicochemical properties]. Ann Inst Pasteur (Paris) 1961 Mar;100:377–389. [PubMed] [Google Scholar]
  22. Takagi T., Doolittle R. F. Amino acid sequence studies on plasmin-derived fragments of human fibrinogen: amino-terminal sequences of intermediate and terminal fragments. Biochemistry. 1975 Mar 11;14(5):940–946. doi: 10.1021/bi00676a010. [DOI] [PubMed] [Google Scholar]
  23. WOFSY L., METZGER H., SINGER S. J. Affinity labeling-a general method for labeling the active sites of antibody and enzyme molecules. Biochemistry. 1962 Nov;1:1031–1039. doi: 10.1021/bi00912a013. [DOI] [PubMed] [Google Scholar]
  24. Weinstein M. J., Doolittle R. F. Differential specificities of the thrombin, plasmin and trypsin with regard to synthetic and natural substrates and inhibitors. Biochim Biophys Acta. 1972 Feb 28;258(2):577–590. doi: 10.1016/0005-2744(72)90250-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES