Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 May 28;93(11):5495–5500. doi: 10.1073/pnas.93.11.5495

Cellular and subcellular localization of the vasopressin- regulated urea transporter in rat kidney.

S Nielsen 1, J Terris 1, C P Smith 1, M A Hediger 1, C A Ecelbarger 1, M A Knepper 1
PMCID: PMC39274  PMID: 8643603

Abstract

The renal urea transporter (RUT) is responsible for urea accumulation in the renal medulla, and consequently plays a central role in the urinary concentrating mechanism. To study its cellular and subcellular localization, we prepared affinity-purified, peptide-derived polyclonal antibodies against rat RUT based on the cloned cDNA sequence. Immunoblots using membrane fractions from rat renal inner medulla revealed a solitary 97-kDa band. Immunocytochemistry demonstrated RUT labeling of the apical and subapical regions of inner medullary collecting duct (IMCD) cells, with no labeling of outer medullary or cortical collecting ducts. Immunoelectron microscopy directly demonstrated labeling of the apical plasma membrane and of subapical intracellular vesicles of IMCD cells, but no labeling of the basolateral plasma membrane. Immunoblots demonstrated RUT labeling in both plasma membrane and intracellular vesicle-enriched membrane fractions from inner medulla, a subcellular distribution similar to that of the vasopressin-regulated water channel, aquaporin-2. In the outer medulla, RUT labeling was seen in terminal portions of short-loop descending thin limbs. Aside from IMCD and descending thin limbs, no other structures were labeled in the kidney. These results suggest that: (i) the RUT provides the apical pathway for rapid, vasopressin-regulated urea transport in the IMCD, (ii) collecting duct urea transport may be increased by vasopressin by stimulation of trafficking of RUT-containing vesicles to the apical plasma membrane, and (iii) the rat urea transporter may provide a pathway for urea entry into the descending limbs of short-loop nephrons.

Full text

PDF
5495

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A standard nomenclature for structures of the kidney. The Renal Commission of the International Union of Physiological Sciences (IUPS). Am J Physiol. 1988 Jan;254(1 Pt 2):F1–F8. doi: 10.1152/ajprenal.1988.254.1.F1. [DOI] [PubMed] [Google Scholar]
  2. BERLINER R. W., LEVINSKY N. G., DAVIDSON D. G., EDEN M. Dilution and concentration of the urine and the action of antidiuretic hormone. Am J Med. 1958 May;24(5):730–744. doi: 10.1016/0002-9343(58)90377-2. [DOI] [PubMed] [Google Scholar]
  3. Chou C. L., Knepper M. A. Inhibition of urea transport in inner medullary collecting duct by phloretin and urea analogues. Am J Physiol. 1989 Sep;257(3 Pt 2):F359–F365. doi: 10.1152/ajprenal.1989.257.3.F359. [DOI] [PubMed] [Google Scholar]
  4. Chou C. L., Sands J. M., Nonoguchi H., Knepper M. A. Concentration dependence of urea and thiourea transport in rat inner medullary collecting duct. Am J Physiol. 1990 Mar;258(3 Pt 2):F486–F494. doi: 10.1152/ajprenal.1990.258.3.F486. [DOI] [PubMed] [Google Scholar]
  5. DiGiovanni S. R., Nielsen S., Christensen E. I., Knepper M. A. Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8984–8988. doi: 10.1073/pnas.91.19.8984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ecelbarger C. A., Terris J., Frindt G., Echevarria M., Marples D., Nielsen S., Knepper M. A. Aquaporin-3 water channel localization and regulation in rat kidney. Am J Physiol. 1995 Nov;269(5 Pt 2):F663–F672. doi: 10.1152/ajprenal.1995.269.5.F663. [DOI] [PubMed] [Google Scholar]
  7. Imai M., Hayashi M., Araki M. Functional heterogeneity of the descending limbs of Henle's loop. I. Internephron heterogeneity in the hamster kidney. Pflugers Arch. 1984 Dec;402(4):385–392. doi: 10.1007/BF00583939. [DOI] [PubMed] [Google Scholar]
  8. Knepper M. A., Roch-Ramel F. Pathways of urea transport in the mammalian kidney. Kidney Int. 1987 Feb;31(2):629–633. doi: 10.1038/ki.1987.44. [DOI] [PubMed] [Google Scholar]
  9. Knepper M. A., Star R. A. The vasopressin-regulated urea transporter in renal inner medullary collecting duct. Am J Physiol. 1990 Sep;259(3 Pt 2):F393–F401. doi: 10.1152/ajprenal.1990.259.3.F393. [DOI] [PubMed] [Google Scholar]
  10. Knepper M. A., Star R. A. The vasopressin-regulated urea transporter in renal inner medullary collecting duct. Am J Physiol. 1990 Sep;259(3 Pt 2):F393–F401. doi: 10.1152/ajprenal.1990.259.3.F393. [DOI] [PubMed] [Google Scholar]
  11. Lemley K. V., Kriz W. Cycles and separations: the histotopography of the urinary concentrating process. Kidney Int. 1987 Feb;31(2):538–548. doi: 10.1038/ki.1987.33. [DOI] [PubMed] [Google Scholar]
  12. Marples D., Knepper M. A., Christensen E. I., Nielsen S. Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. Am J Physiol. 1995 Sep;269(3 Pt 1):C655–C664. doi: 10.1152/ajpcell.1995.269.3.C655. [DOI] [PubMed] [Google Scholar]
  13. Morgan T., Sakai F., Berliner R. W. In vitro permeability of medullary collecting ducts to water and urea. Am J Physiol. 1968 Mar;214(3):574–581. doi: 10.1152/ajplegacy.1968.214.3.574. [DOI] [PubMed] [Google Scholar]
  14. Nielsen S., Chou C. L., Marples D., Christensen E. I., Kishore B. K., Knepper M. A. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1013–1017. doi: 10.1073/pnas.92.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nielsen S., DiGiovanni S. R., Christensen E. I., Knepper M. A., Harris H. W. Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11663–11667. doi: 10.1073/pnas.90.24.11663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nielsen S., Pallone T., Smith B. L., Christensen E. I., Agre P., Maunsbach A. B. Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am J Physiol. 1995 Jun;268(6 Pt 2):F1023–F1037. doi: 10.1152/ajprenal.1995.268.6.F1023. [DOI] [PubMed] [Google Scholar]
  17. Olives B., Neau P., Bailly P., Hediger M. A., Rousselet G., Cartron J. P., Ripoche P. Cloning and functional expression of a urea transporter from human bone marrow cells. J Biol Chem. 1994 Dec 16;269(50):31649–31652. [PubMed] [Google Scholar]
  18. Sabolić I., Katsura T., Verbavatz J. M., Brown D. The AQP2 water channel: effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J Membr Biol. 1995 Feb;143(3):165–175. doi: 10.1007/BF00233445. [DOI] [PubMed] [Google Scholar]
  19. Sands J. M., Nonoguchi H., Knepper M. A. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am J Physiol. 1987 Nov;253(5 Pt 2):F823–F832. doi: 10.1152/ajprenal.1987.253.5.F823. [DOI] [PubMed] [Google Scholar]
  20. Smith C. P., Lee W. S., Martial S., Knepper M. A., You G., Sands J. M., Hediger M. A. Cloning and regulation of expression of the rat kidney urea transporter (rUT2). J Clin Invest. 1995 Sep;96(3):1556–1563. doi: 10.1172/JCI118194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Star R. A. Apical membrane limits urea permeation across the rat inner medullary collecting duct. J Clin Invest. 1990 Oct;86(4):1172–1178. doi: 10.1172/JCI114823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Star R. A., Nonoguchi H., Balaban R., Knepper M. A. Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J Clin Invest. 1988 Jun;81(6):1879–1888. doi: 10.1172/JCI113534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yamamoto T., Sasaki S., Fushimi K., Ishibashi K., Yaoita E., Kawasaki K., Marumo F., Kihara I. Vasopressin increases AQP-CD water channel in apical membrane of collecting duct cells in Brattleboro rats. Am J Physiol. 1995 Jun;268(6 Pt 1):C1546–C1551. doi: 10.1152/ajpcell.1995.268.6.C1546. [DOI] [PubMed] [Google Scholar]
  24. You G., Smith C. P., Kanai Y., Lee W. S., Stelzner M., Hediger M. A. Cloning and characterization of the vasopressin-regulated urea transporter. Nature. 1993 Oct 28;365(6449):844–847. doi: 10.1038/365844a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES