Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 May 28;93(11):5544–5549. doi: 10.1073/pnas.93.11.5544

Interaction of cyclooxygenases with an apoptosis- and autoimmunity-associated protein.

B A Ballif 1, N V Mincek 1, J T Barratt 1, M L Wilson 1, D L Simmons 1
PMCID: PMC39283  PMID: 8643612

Abstract

Cyclooxygenases (COXs) 1 and 2 are 72-kDa, intralumenal residents of the endoplasmic reticulum (ER) and nuclear envelope, where they catalyze the rate-limiting steps in the conversion of arachidonate to the physiologically dynamic prostanoids. Recent studies, including the generation of knockout mice, show COX-1 and COX-2 to have biologically distinct roles within cells and organisms. Also apparent is that arachidonate substrate is selectably metabolized by COX-2 after mitogen stimulation in many cells that contain both isoforms. Because COX-1 and COX-2 are highly conserved in all residues needed for catalysis and in their purified forms have almost identical kinetic properties, we have searched for COX-interacting ER proteins that might mediate these unique isoenzymic properties. Using COXs as bait in the yeast two-hybrid system, we identified autoimmunity- and apoptosis-associated nucleobindin (Nuc) as a protein that specifically interacts with both isoenzymes. COX-Nuc binding was substantiated by immunoprecipitation experiments, which showed that COX-1 and, to a lesser extent, COX-2 form complexes with Nuc in vitro. When overexpressed in COS-1 cells, Nuc was found to be extracellularly released. However, when Nuc was co-overexpressed with COX-1 or COX-2, its release was reduced by >80%. This finding suggests that COX isoenzymes participate in the retention of Nuc within the lumen of the ER, where COX may regulate the release of Nuc from the cell. It also identifies Nuc as a potential regulator of COXs through this interaction.

Full text

PDF
5544

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett J., Chow J., Ives D., Chiou M., Mackenzie R., Osen E., Nguyen B., Tsing S., Bach C., Freire J. Purification, characterization and selective inhibition of human prostaglandin G/H synthase 1 and 2 expressed in the baculovirus system. Biochim Biophys Acta. 1994 Nov 16;1209(1):130–139. doi: 10.1016/0167-4838(94)90148-1. [DOI] [PubMed] [Google Scholar]
  2. Bartel P. L., Fields S. Analyzing protein-protein interactions using two-hybrid system. Methods Enzymol. 1995;254:241–263. doi: 10.1016/0076-6879(95)54018-0. [DOI] [PubMed] [Google Scholar]
  3. Bartel P., Chien C. T., Sternglanz R., Fields S. Elimination of false positives that arise in using the two-hybrid system. Biotechniques. 1993 Jun;14(6):920–924. [PubMed] [Google Scholar]
  4. Colombo M. I., Inglese J., D'Souza-Schorey C., Beron W., Stahl P. D. Heterotrimeric G proteins interact with the small GTPase ARF. Possibilities for the regulation of vesicular traffic. J Biol Chem. 1995 Oct 13;270(41):24564–24571. doi: 10.1074/jbc.270.41.24564. [DOI] [PubMed] [Google Scholar]
  5. Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245–246. doi: 10.1038/340245a0. [DOI] [PubMed] [Google Scholar]
  6. Grossman C. J., Wiseman J., Lucas F. S., Trevethick M. A., Birch P. J. Inhibition of constitutive and inducible cyclooxygenase activity in human platelets and mononuclear cells by NSAIDs and Cox 2 inhibitors. Inflamm Res. 1995 Jun;44(6):253–257. doi: 10.1007/BF01782978. [DOI] [PubMed] [Google Scholar]
  7. Kanai Y., Katagiri T., Mori S., Kubota T. An established MRL/Mp-lpr/lpr cell line with null cell properties produces a B cell differentiation factor(s) that promotes anti-single-stranded DNA antibody production in MRL spleen cell culture. Int Arch Allergy Appl Immunol. 1986;81(1):92–94. doi: 10.1159/000234114. [DOI] [PubMed] [Google Scholar]
  8. Kanai Y., Kyuwa S., Miura K., Kurosawa Y. Induction and natural occurrence of serum nucleosomal DNA in autoimmune MRL/lpr/lpr mice: its relation to apoptosis in the thymus. Immunol Lett. 1995 May;46(1-2):207–214. doi: 10.1016/0165-2478(95)00042-4. [DOI] [PubMed] [Google Scholar]
  9. Kanai Y., Miura K., Uehara T., Amagai M., Takeda O., Tanuma S., Kurosawa Y. Natural occurrence of Nuc in the sera of autoimmune-prone MRL/lpr mice. Biochem Biophys Res Commun. 1993 Oct 29;196(2):729–736. doi: 10.1006/bbrc.1993.2310. [DOI] [PubMed] [Google Scholar]
  10. Kanai Y., Takeda O., Kanai Y., Miura K., Kurosawa Y. Novel autoimmune phenomena induced in vivo by a new DNA binding protein Nuc: a study on MRL/n mice. Immunol Lett. 1993 Dec;39(1):83–89. doi: 10.1016/0165-2478(93)90168-2. [DOI] [PubMed] [Google Scholar]
  11. Kanai Y., Takeda O., Miura K., Amagai M., Kaneko T., Kubota T., Kanai Y., Tanuma S., Kurosawa Y. Induction of autoantibodies in normal mice by injection of nucleobindin and natural occurrence of antibodies against nucleobindin in autoimmune MRL/lpr/lpr mice. Immunol Lett. 1995 Feb;45(1-2):35–42. doi: 10.1016/0165-2478(94)00224-f. [DOI] [PubMed] [Google Scholar]
  12. Kujubu D. A., Fletcher B. S., Varnum B. C., Lim R. W., Herschman H. R. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J Biol Chem. 1991 Jul 15;266(20):12866–12872. [PubMed] [Google Scholar]
  13. Langenbach R., Morham S. G., Tiano H. F., Loftin C. D., Ghanayem B. I., Chulada P. C., Mahler J. F., Lee C. A., Goulding E. H., Kluckman K. D. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell. 1995 Nov 3;83(3):483–492. doi: 10.1016/0092-8674(95)90126-4. [DOI] [PubMed] [Google Scholar]
  14. Lu X., Xie W., Reed D., Bradshaw W. S., Simmons D. L. Nonsteroidal antiinflammatory drugs cause apoptosis and induce cyclooxygenases in chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7961–7965. doi: 10.1073/pnas.92.17.7961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miura K., Kurosawa Y., Kanai Y. Calcium-binding activity of nucleobindin mediated by an EF hand moiety. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1388–1393. doi: 10.1006/bbrc.1994.1384. [DOI] [PubMed] [Google Scholar]
  16. Miura K., Titani K., Kurosawa Y., Kanai Y. Molecular cloning of nucleobindin, a novel DNA-binding protein that contains both a signal peptide and a leucine zipper structure. Biochem Biophys Res Commun. 1992 Aug 31;187(1):375–380. doi: 10.1016/s0006-291x(05)81503-7. [DOI] [PubMed] [Google Scholar]
  17. Mochizuki N., Hibi M., Kanai Y., Insel P. A. Interaction of the protein nucleobindin with G alpha i2, as revealed by the yeast two-hybrid system. FEBS Lett. 1995 Oct 9;373(2):155–158. doi: 10.1016/0014-5793(95)01031-9. [DOI] [PubMed] [Google Scholar]
  18. Morham S. G., Langenbach R., Loftin C. D., Tiano H. F., Vouloumanos N., Jennette J. C., Mahler J. F., Kluckman K. D., Ledford A., Lee C. A. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell. 1995 Nov 3;83(3):473–482. doi: 10.1016/0092-8674(95)90125-6. [DOI] [PubMed] [Google Scholar]
  19. O'Banion M. K., Sadowski H. B., Winn V., Young D. A. A serum- and glucocorticoid-regulated 4-kilobase mRNA encodes a cyclooxygenase-related protein. J Biol Chem. 1991 Dec 5;266(34):23261–23267. [PubMed] [Google Scholar]
  20. Picot D., Loll P. J., Garavito R. M. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature. 1994 Jan 20;367(6460):243–249. doi: 10.1038/367243a0. [DOI] [PubMed] [Google Scholar]
  21. Reddy S. T., Herschman H. R. Ligand-induced prostaglandin synthesis requires expression of the TIS10/PGS-2 prostaglandin synthase gene in murine fibroblasts and macrophages. J Biol Chem. 1994 Jun 3;269(22):15473–15480. [PubMed] [Google Scholar]
  22. Ren Y., Walker C., Loose-Mitchell D. S., Deng J., Ruan K. H., Kulmacz R. J. Topology of prostaglandin H synthase-1 in the endoplasmic reticulum membrane. Arch Biochem Biophys. 1995 Oct 20;323(1):205–214. doi: 10.1006/abbi.1995.0027. [DOI] [PubMed] [Google Scholar]
  23. Roshak A., Sathe G., Marshall L. A. Suppression of monocyte 85-kDa phospholipase A2 by antisense and effects on endotoxin-induced prostaglandin biosynthesis. J Biol Chem. 1994 Oct 21;269(42):25999–26005. [PubMed] [Google Scholar]
  24. Schiestl R. H., Gietz R. D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989 Dec;16(5-6):339–346. doi: 10.1007/BF00340712. [DOI] [PubMed] [Google Scholar]
  25. Simmons D. L., Levy D. B., Yannoni Y., Erikson R. L. Identification of a phorbol ester-repressible v-src-inducible gene. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1178–1182. doi: 10.1073/pnas.86.4.1178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Simmons D. L., Xie W., Evett G., Merrill J., Robertson D. L., Bradshaw W. S. Drug inhibition and cellular regulation of prostaglandin G/H synthase isoenzyme 2. J Lipid Mediat. 1993 Mar-Apr;6(1-3):113–117. [PubMed] [Google Scholar]
  27. Smith W. L., Marnett L. J. Prostaglandin endoperoxide synthase: structure and catalysis. Biochim Biophys Acta. 1991 Apr 24;1083(1):1–17. doi: 10.1016/0005-2760(91)90119-3. [DOI] [PubMed] [Google Scholar]
  28. Vojtek A. B., Hollenberg S. M., Cooper J. A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell. 1993 Jul 16;74(1):205–214. doi: 10.1016/0092-8674(93)90307-c. [DOI] [PubMed] [Google Scholar]
  29. Ward A. C. Single-step purification of shuttle vectors from yeast for high frequency back-transformation into E. coli. Nucleic Acids Res. 1990 Sep 11;18(17):5319–5319. doi: 10.1093/nar/18.17.5319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wendel M., Sommarin Y., Bergman T., Heinegård D. Isolation, characterization, and primary structure of a calcium-binding 63-kDa bone protein. J Biol Chem. 1995 Mar 17;270(11):6125–6133. doi: 10.1074/jbc.270.11.6125. [DOI] [PubMed] [Google Scholar]
  31. Xie W. L., Chipman J. G., Robertson D. L., Erikson R. L., Simmons D. L. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2692–2696. doi: 10.1073/pnas.88.7.2692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Xie W., Merrill J. R., Bradshaw W. S., Simmons D. L. Structural determination and promoter analysis of the chicken mitogen-inducible prostaglandin G/H synthase gene and genetic mapping of the murine homolog. Arch Biochem Biophys. 1993 Jan;300(1):247–252. doi: 10.1006/abbi.1993.1034. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES