Abstract
The effect of a class of ligands on the catalytic activity of acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) from Torpedo californica electroplax tissue has been studied via the transient reaction of a fluorophoric acetylcholine analog, 7-(N,N-dimethyl)carbamoxy-N-methylquinolinium iodide (M7C). These "peripheral" ligands inhibit the formation of a metastable carbamyl-enzyme intermediate from M7C. They induce slow isomerization to a new conformational state that shows little or no reaction with M7C. At saturating ligand concentration, the unimolecular isomerization rate constant is 0.03 +/- 0.01 sec-1, a slow rate compared to the rate of carbamylation of the active conformation. Peripheral ligands alter the distribution between reactive and unreactive conformations, thus inducing biphasic rates and amplitudes of carbamylation. The amplitudes, but not the two specific rates, are affected by the concentration of ligand. Zn2+ and d-tubocurarine are two ligands that induce the same slow isomerization rate. On the basis of this identity of function by ligands of disparate structure, we postulate the existence of only a single active conformation and a single inactive conformation (stabilized by interaction with both ligands). In the absence of ligands, the active conformation predominates. Peripheral ligands bind specifically to the inactive conformation. Alkaline earth cations such as Ca2+ and Mg2+ interact strongly and preferentially with the active conformation and drive the conformational equilibrium toward the active state. Ligand-induced inactivation is observed both with highly purified trypsin-solubilized enzyme and with enzyme bound to unfractionated membrane fragments.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bulger J. E., Fu J. L., Hindy E. F., Silberstein R. L., Hess G. P. Allosteric interactions between the membrane-bound acetylcholine receptor and chemical mediators. Kinetic studies. Biochemistry. 1977 Feb 22;16(4):684–692. doi: 10.1021/bi00623a020. [DOI] [PubMed] [Google Scholar]
- Changeux J. P., Benedetti L., Bourgeois J. P., Brisson A., Cartaud J., Devaux P., Grünhagen H., Moreau M., Popot J. L., Sobel A. Some structural properties of the cholinergic receptor protein in its membrane environmental relevant to its function as a pharmacological receptor. Cold Spring Harb Symp Quant Biol. 1976;40:211–230. doi: 10.1101/sqb.1976.040.01.023. [DOI] [PubMed] [Google Scholar]
- Dudai Y., Silman I. The effects of solubilization procedures on the release and molecular state of acetylcholinesterase from electric organ tissue. J Neurochem. 1974 Dec;23(6):1177–1187. doi: 10.1111/j.1471-4159.1974.tb12215.x. [DOI] [PubMed] [Google Scholar]
- Duguid J. R., Raftery M. A. Fractionation and partial characterization of membrane particles from Torpedo californica electroplax. Biochemistry. 1973 Sep 11;12(19):3593–3597. doi: 10.1021/bi00743a003. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
- Foidart J. M., Gridelet J. Effects of procaine and d-tubocurarine on the activity of membrane bound acetylcholinesterase. Biochem Pharmacol. 1974 Feb 1;23(3):725–733. doi: 10.1016/0006-2952(74)90637-6. [DOI] [PubMed] [Google Scholar]
- Fu J. L., Donner D. B., Moore D. E., Hess G. P. Allosteric interactions between the membrane-bound acetylcholine receptor and chemical mediators: equilibrium measurements. Biochemistry. 1977 Feb 22;16(4):678–684. doi: 10.1021/bi00623a019. [DOI] [PubMed] [Google Scholar]
- Gibson R. E. Ligand interactions with the acetylcholine receptor from Torpedo californica. Extensions of the allosteric model for cooperativity to half-of-site activity. Biochemistry. 1976 Aug 24;15(17):3890–3901. doi: 10.1021/bi00662a037. [DOI] [PubMed] [Google Scholar]
- KRUPKA R. M. ACETYLCHOLINESTERASE: TRIMETHYLAMMONIUM-ION INHIBITION OF DEACETYLATION. Biochemistry. 1964 Nov;3:1749–1754. doi: 10.1021/bi00899a029. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lwebuga-Mukasa J. S., Lappi S., Taylor P. Molecular forms of acetylcholinesterase from Torpedo californica: their relationship to synaptic membranes. Biochemistry. 1976 Apr 6;15(7):1425–1434. doi: 10.1021/bi00652a012. [DOI] [PubMed] [Google Scholar]
- MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
- Massoulié J., Rieger F. L'acétylcholinestérase des organes électriques de poissons (torpille et gymnote); complexes membranaires. Eur J Biochem. 1969 Dec;11(3):441–455. doi: 10.1111/j.1432-1033.1969.tb00794.x. [DOI] [PubMed] [Google Scholar]
- Miledi R., Potter L. T. Acetylcholine receptors in muscle fibres. Nature. 1971 Oct 29;233(5322):599–603. doi: 10.1038/233599a0. [DOI] [PubMed] [Google Scholar]
- Mooser G., Sigman D. S. Ligand binding properties of acetylcholinesterase determined with fluorescent probes. Biochemistry. 1974 May 21;13(11):2299–2307. doi: 10.1021/bi00708a010. [DOI] [PubMed] [Google Scholar]
- Reed K., Vandlen R., Bode J., Duguid J., Raftery M. A. Characterization of acetylcholine receptor-rich and acetylcholinesterase-rich membrane particles from Torpedo californica electroplax. Arch Biochem Biophys. 1975 Mar;167(1):138–144. doi: 10.1016/0003-9861(75)90449-x. [DOI] [PubMed] [Google Scholar]
- Robaire B., Kato G. Effects of Mg2+ and Ca2+ on soluble and membrane-bound acetylcholinesterase from Electrophorus electricus. Biochem Pharmacol. 1974 Sep 1;23(17):2476–2480. doi: 10.1016/0006-2952(74)90246-9. [DOI] [PubMed] [Google Scholar]
- Robaire B., Kato G. Effects of edrophonium, eserine, decamethonium, d-tubocurarine, and gallamine on the kinetics of membrane-bound and solubilized eel acetylcholinesterase. Mol Pharmacol. 1975 Nov;11(6):722–734. [PubMed] [Google Scholar]
- Robaire B., Kato G. Some differences between soluble and membrane-bound acetylcholinesterase from Electrophorus electricus. FEBS Lett. 1973 Dec 15;38(1):83–86. doi: 10.1016/0014-5793(73)80519-8. [DOI] [PubMed] [Google Scholar]
- Rosenberry T. L. Acetylcholinesterase. Adv Enzymol Relat Areas Mol Biol. 1975;43:103–218. doi: 10.1002/9780470122884.ch3. [DOI] [PubMed] [Google Scholar]
- Rosenberry T. L., Bernhard S. A. Studies of catalysis by acetylcholinesterase. I. Fluorescent titration with a carbamoylating agent. Biochemistry. 1971 Oct 26;10(22):4114–4120. doi: 10.1021/bi00798a016. [DOI] [PubMed] [Google Scholar]
- Rosenberry T. L., Bernhard S. A. Studies of catalysis by acetylcholinesterase. Synergistic effects of inhibitors during the hydrolysis of acetic acid esters. Biochemistry. 1972 Nov 7;11(23):4308–4321. doi: 10.1021/bi00773a018. [DOI] [PubMed] [Google Scholar]
- Rosenberry T. L., Richardson J. M. Structure of 18S and 14S acetylcholinesterase. Identification of collagen-like subunits that are linked by disulfide bonds to catalytic subunits. Biochemistry. 1977 Aug 9;16(16):3550–3558. doi: 10.1021/bi00635a008. [DOI] [PubMed] [Google Scholar]
- Sheridan R. E., Lester H. A. Rates and equilibria at the acetylcholine receptor of Electrophorus electroplaques: a study of neurally evoked postsynaptic currents and of voltage-jump relaxations. J Gen Physiol. 1977 Aug;70(2):187–219. [PMC free article] [PubMed] [Google Scholar]
- Silman H. I., Karlin A. Effect of local pH changes caused by substrate hydrolysis on the activity of membrane-bound acetylcholinesterase. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1664–1668. doi: 10.1073/pnas.58.4.1664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor P., Jones J. W., Jacobs N. M. Acetylcholinesterase from Torpedo: characterization of an enzyme species isolated by lytic procedures. Mol Pharmacol. 1974 Jan;10(1):78–92. [PubMed] [Google Scholar]
- Taylor P., Lappi S. Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium binding. Biochemistry. 1975 May 6;14(9):1989–1997. doi: 10.1021/bi00680a029. [DOI] [PubMed] [Google Scholar]
