Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Aug;75(8):3722–3726. doi: 10.1073/pnas.75.8.3722

Purine metabolism in cultured human fibroblasts derived from patients deficient in hypoxanthine phosphoribosyltransferase, purine nucleoside phosphorylase, or adenosine deaminase.

L F Thompson, R C Willis, J W Stoop, J E Seegmiller
PMCID: PMC392858  PMID: 99741

Abstract

Rates of purine synthesis de novo, as measured by the incorporation of [14C]formate into newly synthesized purines, have been determined in cultured human fibroblasts derived from normal individuals and from patients deficient in adenosine deaminase, purine nucleoside phosphorylase, or hypoxanthine phosphoribosyltransferase, three consecutive enzymes of the purine salvage pathway. All four types of cell lines are capable of incorporating [14C]formate into purines at approximately the same rate when the assays are conducted in purine-free medium. The purine overproduction that is characteristic of a deficiency in either the transferase or the phosphorylase and that results from a block in purine reutilization can be demonstrated by the resistance of [14C]formate incorporation into purines to inhibition by hypoxanthine in the case of hypoxanthine phosphoribosyltransferase-deficient fibroblasts and by resistance to inhibition by inosine in the case of purine nucleoside phosphorylase-deficient fibroblasts.

Full text

PDF
3722

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagnara A. S., Letter A. A., Henderson J. F. Multiple mechanisms of regulation of purine biosynthesis de novo in intact tumor cells. Biochim Biophys Acta. 1974 Dec 20;374(3):259–270. doi: 10.1016/0005-2787(74)90247-0. [DOI] [PubMed] [Google Scholar]
  2. Barankiewicz J., Henderson J. F. Effect of lowered intracellular ATP and GTP concentrations on purine ribonucleotide synthesis and interconversion. Can J Biochem. 1977 Mar;55(3):257–262. doi: 10.1139/o77-036. [DOI] [PubMed] [Google Scholar]
  3. Becker M. A. Patterns of phosphoribosylpyrophosphate and ribose-5-phosphate concentration and generation in fibroblasts from patients with gout and purine overproduction. J Clin Invest. 1976 Feb;57(2):308–318. doi: 10.1172/JCI108282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Becker M. A. Regulation of purine nucleotide synthesis. Effects of inosine on normal and hypoxantine-guanine phosphoribosyltransferase-deficient fibroblasts. Biochim Biophys Acta. 1976 Jun 18;435(2):132–144. doi: 10.1016/0005-2787(76)90244-6. [DOI] [PubMed] [Google Scholar]
  5. Boer P., Lipstein B., De Vries A., Sperling O. The effect of ribose 5-phosphate and 5-phosphoribosyl-1-pyrophosphate availability on de novo synthesis of purine nucleotides in rat liver slices. Biochim Biophys Acta. 1976 Apr 15;432(1):10–17. doi: 10.1016/0005-2787(76)90036-8. [DOI] [PubMed] [Google Scholar]
  6. Brenton D. P., Astrin K. H., Cruikshank M. K., Seegmiller J. E. Measurement of free nucleotides in cultured human lymphoid cells using high pressure liquid chromatography. Biochem Med. 1977 Jun;17(3):231–247. doi: 10.1016/0006-2944(77)90029-1. [DOI] [PubMed] [Google Scholar]
  7. Cohen A., Doyle D., Martin D. W., Jr, Ammann A. J. Abnormal purine metabolism and purine overproduction in a patient deficient in purine nucleoside phosphorylase. N Engl J Med. 1976 Dec 23;295(26):1449–1454. doi: 10.1056/NEJM197612232952603. [DOI] [PubMed] [Google Scholar]
  8. Fox I. H., Kelley W. N. Human phosphoribosylpyrophosphate synthetase. Kinetic mechanism and end product inhibition. J Biol Chem. 1972 Apr 10;247(7):2126–2131. [PubMed] [Google Scholar]
  9. Fox I. H., Kelley W. N. Phosphoribosylpyrophosphate in man: biochemical and clinical significance. Ann Intern Med. 1971 Mar;74(3):424–433. doi: 10.7326/0003-4819-74-3-424. [DOI] [PubMed] [Google Scholar]
  10. Giblett E. R., Ammann A. J., Wara D. W., Sandman R., Diamond L. K. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet. 1975 May 3;1(7914):1010–1013. doi: 10.1016/s0140-6736(75)91950-9. [DOI] [PubMed] [Google Scholar]
  11. Giblett E. R., Anderson J. E., Cohen F., Pollara B., Meuwissen H. J. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet. 1972 Nov 18;2(7786):1067–1069. doi: 10.1016/s0140-6736(72)92345-8. [DOI] [PubMed] [Google Scholar]
  12. HENDERSON J. F., KHOO M. K. SYNTHESIS OF 5-PHOSPHORIBOSYL 1-PYROPHOSPHATE FROM GLUCOSE IN EHRLICH ASCITES TUMOR CELLS IN VITRO. J Biol Chem. 1965 Jun;240:2349–2357. [PubMed] [Google Scholar]
  13. Hershfield M. S., Seegmiller J. E. Regulation of de novo purine biosynthesis in human lymphoblasts. Coordinate control of proximal (rate-determining) steps and the inosinic acid branch point. J Biol Chem. 1976 Dec 10;251(23):7348–7354. [PubMed] [Google Scholar]
  14. Hershfield M. S., Seegmiller J. E. Regulation of de novo purine synthesis in human lymphoblasts. Similar rates of de novo synthesis during growth by normal cells and mutants deficient in hypoxanthine-guanine phosphoribosyltransferase activity. J Biol Chem. 1977 Sep 10;252(17):6002–6010. [PubMed] [Google Scholar]
  15. Hershko A., Razin A., Mager J. Regulation of the synthesis of 5-phosphoribosyl-I-pyrophosphate in intact red blood cells and in cell-free preparations. Biochim Biophys Acta. 1969 Jun 17;184(1):64–76. doi: 10.1016/0304-4165(69)90099-3. [DOI] [PubMed] [Google Scholar]
  16. Holmes E. W., McDonald J. A., McCord J. M., Wyngaarden J. B., Kelley W. N. Human glutamine phosphoribosylpyrophosphate amidotransferase. Kinetic and regulatory properties. J Biol Chem. 1973 Jan 10;248(1):144–150. [PubMed] [Google Scholar]
  17. Holmes E. W., Wyngaarden J. B., Kelley W. N. Human glutamine phosphoribosylpyrophosphate amidotransferase. Two molecular forms interconvertible by purine ribonucleotides and phosphoribosylpyrophosphate. J Biol Chem. 1973 Sep 10;248(17):6035–6040. [PubMed] [Google Scholar]
  18. Kelley W. N., Fox I. H., Wyngaarden J. B. Regulation of purine biosynthesis in cultured human cells. I. Effects of orotic acid. Biochim Biophys Acta. 1970 Sep 22;215(3):512–516. doi: 10.1016/0304-4165(70)90101-7. [DOI] [PubMed] [Google Scholar]
  19. Kelley W. N., Greene M. L., Fox I. H., Rosenbloom F. M., Levy R. I., Seegmiller J. E. Effects of orotic acid on purine and lipoprotein metabolism in man. Metabolism. 1970 Dec;19(12):1025–1035. doi: 10.1016/0026-0495(70)90026-0. [DOI] [PubMed] [Google Scholar]
  20. LESCH M., NYHAN W. L. A FAMILIAL DISORDER OF URIC ACID METABOLISM AND CENTRAL NERVOUS SYSTEM FUNCTION. Am J Med. 1964 Apr;36:561–570. doi: 10.1016/0002-9343(64)90104-4. [DOI] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Lever J. E., Nuki G., Seegmiller J. E. Expression of purine overproduction in a series of 8-azaguanine-resistant diploid human lymphoblast lines. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2679–2683. doi: 10.1073/pnas.71.7.2679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mills G. C., Schmalstieg F. C., Trimmer K. B., Goldman A. S., Goldblum R. M. Purine metabolism in adenosine deaminase deficiency. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2867–2871. doi: 10.1073/pnas.73.8.2867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rosenbloom F. M., Henderson J. F., Caldwell I. C., Kelley W. N., Seegmiller J. E. Biochemical bases of accelerated purine biosynthesis de novo in human fibroblasts lacking hypoxanthine-guanine phosphoribosyltransferase. J Biol Chem. 1968 Mar 25;243(6):1166–1173. [PubMed] [Google Scholar]
  25. Seegmiller J. E., Rosenbloom F. M., Kelley W. N. Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science. 1967 Mar 31;155(3770):1682–1684. doi: 10.1126/science.155.3770.1682. [DOI] [PubMed] [Google Scholar]
  26. Snyder F. F., Mendelsohn J., Seegmiller J. E. Adenosine metabolism in phytohemagglutinin-stimulated human lymphocytes. J Clin Invest. 1976 Sep;58(3):654–666. doi: 10.1172/JCI108512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stoop J. W., Zegers B. J., Hendrickx G. F., van Heukelom L. H., Staal G. E., de Bree P. K., Wadman S. K., Ballieux R. E. Purine nucleoside phosphorylase deficiency associated with selective cellular immunodeficiency. N Engl J Med. 1977 Mar 24;296(12):651–655. doi: 10.1056/NEJM197703242961203. [DOI] [PubMed] [Google Scholar]
  28. Wood A. W., Becker M. A., Seegmiller J. E. Purine nucleotide synthesis in lymphoblasts cultured from normal subjects and a patient with Lesch-Nyhan syndrome. Biochem Genet. 1973 Jul;9(3):261–274. doi: 10.1007/BF00485739. [DOI] [PubMed] [Google Scholar]
  29. Zoref E., De Vries A., Sperling O. Mutant feedback-resistant phosphoribosylpyrophosphate synthetase associated with purine overproduction and gout. Phosphoribosylpyrophosphate and purine metabolism in cultured fibroblasts. J Clin Invest. 1975 Nov;56(5):1093–1099. doi: 10.1172/JCI108183. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES