Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Aug;75(8):3856–3858. doi: 10.1073/pnas.75.8.3856

Sodium-stimulated active transport of aminoisobutyric acid by reconstituted vesicles from partially purified plasma membranes of mouse fibroblasts transformed by simian virus 40.

H Nishino, L G Tillotson, R M Schiller, K I Inui, K J Isselbacher
PMCID: PMC392886  PMID: 211507

Abstract

Plasma membrane fractions isolated from mouse fibroblast BALB/c 3T3 cells transformed by simian virus 40 were partially purified by treatment with dimethylmaleic anhydride followed by extraction with 2% cholate. The extracted proteins were combined with exogenous phospholipids and eluted through a Sephadex G50 column. Reconstituted vesicles thus obtained were shown to possess the ability of Na+-stimulated transport of alpha-aminoisobutyric acid. The simultaneous addition of NaSCN and alpha-aminoisobutyric acid to these vesicles produced a transient accumulation above the equilibrium level (overshoot, active transport). The Na+-stimulated transport of alpha-aminoisobutyric acid was sensitive to the accompanying anion and to the temperature of incubation. The results demonstrate that partially purified membrane proteins of mouse fibroblast cells can be incorporated into the liposomes that have the characteristics of Na+-stimulated and electrochemically sensitive active transport of alpha-aminoisobutyric acid.

Full text

PDF
3856

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bardin C., Johnstone R. M. Sodium-dependent amino acid transport in reconstituted membrane vesicles from Ehrlich ascites cell plasma membranes. J Biol Chem. 1978 Mar 10;253(5):1725–1732. [PubMed] [Google Scholar]
  2. Brunner J., Skrabal P., Hauser H. Single bilayer vesicles prepared without sonication. Physico-chemical properties. Biochim Biophys Acta. 1976 Dec 2;455(2):322–331. doi: 10.1016/0005-2736(76)90308-4. [DOI] [PubMed] [Google Scholar]
  3. CHRISTENSEN H. N., RIGGS T. R., RAY N. E. Concentrative uptake of amino acids by erythrocytes in vitro. J Biol Chem. 1952 Jan;194(1):41–51. [PubMed] [Google Scholar]
  4. Cecchini G., Payne G. S., Oxender D. L. Reconstitution of neutral amino acid transport from partially purified membrane components from Ehrlich ascites tumor cells. J Supramol Struct. 1977;7(3-4):481–487. doi: 10.1002/jss.400070317. [DOI] [PubMed] [Google Scholar]
  5. Christensen H. N., De Cespedes C., Handlogten M. E., Ronquist G. Modified transport substrates as probes for intramembrane gradients. Ann N Y Acad Sci. 1974 Feb 18;227:355–379. doi: 10.1111/j.1749-6632.1974.tb14400.x. [DOI] [PubMed] [Google Scholar]
  6. Colombini M., Johnstone R. M. Na+-dependent amino acid transport in plasma membrane vesicles from Ehrlich ascites cells. J Membr Biol. 1974;15(3):261–276. doi: 10.1007/BF01870091. [DOI] [PubMed] [Google Scholar]
  7. Crane R. K., Malathi P., Preiser H., Fairclough P. Some characteristics of kidney Na+ -dependent glucose carrier reconstituted into sonicated liposomes. Am J Physiol. 1978 Jan;234(1):E1–E5. doi: 10.1152/ajpendo.1978.234.1.E1. [DOI] [PubMed] [Google Scholar]
  8. Ferguson D. R., Burton K. A. Reconstitution in phospholipid vesicles of a glucose transport system from pig small intestine. Nature. 1977 Feb 17;265(5595):639–642. doi: 10.1038/265639a0. [DOI] [PubMed] [Google Scholar]
  9. Goldin S. M., Rhoden V. Reconstitution and "transport specificity fractionation" of the human erythrocyte glucose transport system. A new approach for identification and isolation of membrane transport proteins. J Biol Chem. 1978 Apr 25;253(8):2575–2583. [PubMed] [Google Scholar]
  10. Kahlenberg A., Zala C. A. Reconstitution of D-glucose transport in vesicles composed of lipids and intrinsic protein (zone 4.5) of the human erythrocyte membrane. J Supramol Struct. 1977;7(3-4):287–300. doi: 10.1002/jss.400070303. [DOI] [PubMed] [Google Scholar]
  11. Kasahara M., Hinkle P. C. Reconstitution and purification of the D-glucose transporter from human erythrocytes. J Biol Chem. 1977 Oct 25;252(20):7384–7390. [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Lever J. E. Active amino acid transport in plasma membrane vesicles from Simian virus 40-transformed mouse fibroblasts. Characteristics of electrochemical Na+ gradient-stimulated uptake. J Biol Chem. 1977 Mar 25;252(6):1990–1997. [PubMed] [Google Scholar]
  14. Nilsen-Hamilton M., Hamilton R. T. Uptake of alpha-aminoisobutyric acid and phosphate by membrane vesicles derived from growing and quiescent fibroblasts. J Cell Physiol. 1976 Dec;89(4):795–800. doi: 10.1002/jcp.1040890445. [DOI] [PubMed] [Google Scholar]
  15. Nishino H., Schiller R. M., Parnes J. R., Isselbacher K. J. Role of Na+ in alpha-aminoisobutyric acid uptake by membrane vesicles from mouse fibroblasts transformed by simian virus 40. Proc Natl Acad Sci U S A. 1978 May;75(5):2329–2332. doi: 10.1073/pnas.75.5.2329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. OXENDER D. L., CHRISTENSEN H. N. DISTINCT MEDIATING SYSTEMS FOR THE TRANSPORT OF NEUTRAL AMINO ACIDS BY THE EHRLICH CELL. J Biol Chem. 1963 Nov;238:3686–3699. [PubMed] [Google Scholar]
  17. Parnes J. R., Garvey T. Q., 3rd, Isselbacher K. J. [Amino acid transport by membrane vesicles of virally transformed and nontransformed cells: effects of sodium gradient and cell density]. J Cell Physiol. 1976 Dec;89(4):789–794. doi: 10.1002/jcp.1040890444. [DOI] [PubMed] [Google Scholar]
  18. Quinlan D. C., Parnes J. R., Shalom R., Garvey T. Q., 3rd, Isselbacher K. J., Hochstadt J. Sodium-stimulated amino acid uptake into isolated membrane vesicles from Balb/c 3T3 cells transformed by simian virus 40. Proc Natl Acad Sci U S A. 1976 May;73(5):1631–1635. doi: 10.1073/pnas.73.5.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shanahan M. F., Czech M. P. Purification and reconstitution of the adipocyte plasma membrane D-glucose transport system. J Biol Chem. 1977 Dec 10;252(23):8341–8343. [PubMed] [Google Scholar]
  20. Shertzer H. G., Racker E. Reconstitution and characterization of the adenine nucleotide transporter derived from bovine heart mitochondria. J Biol Chem. 1976 Apr 25;251(8):2446–2452. [PubMed] [Google Scholar]
  21. Steck T. L., Yu J. Selective solubilization of proteins from red blood cell membranes by protein perturbants. J Supramol Struct. 1973;1(3):220–232. doi: 10.1002/jss.400010307. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES