Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Aug;75(8):3909–3912. doi: 10.1073/pnas.75.8.3909

Developmental change in human intestinal alkaline phosphatase.

R A Mulivor, V L Hannig, H Harris
PMCID: PMC392898  PMID: 279006

Abstract

Starch gel electrophoresis and inhibition studies with L-phenylalanine, L-homoarginine, L-leucine, L-leucylglycylglycine, and L-phenylalanylglycylglycine were carried out on a series of human alkaline phosphatases [orthophosphoric-monoester phosphohydrolase (alkaline optimum); EC 3.1.3.1] derived from fetal and adult liver, kidney, bone, and intestine. No differences between adult and fetal liver, kidney, or bone alkaline phosphatases were observed by either electrophoretic or inhibition studies. However, the fetal intestinal enzyme could be clearly distinguished from the adult intestinal enzyme by its greater anodal electrophoretic mobility and its retardation after treatment with neuraminidase. Even after extensive neuraminidase treatment, its anodal mobility was still slightly greater than that of adult intestinal alkaline phosphatase. Fetal and adult intestinal enzymes showed the same inhibition profiles with the series of inhibitors both before and after treatment with neuraminidase. A survey of intestinal samples from fetuses and premature infants of various gestational ages indicated that the changeover from the synthesis of fetal to adult intestinal enzyme begins at about 28-32 weeks of gestation. The difference between the fetal and adult forms of intestinal alkaline phosphatase may represent the expression of different gene loci or a difference in post-translational modification.

Full text

PDF
3909

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOYER S. H. Human organ alkaline phosphatases: discrimination by several means including starch gel electrophoresis of antienzyme-enzyme supernatant fluids. Ann N Y Acad Sci. 1963 May 8;103:938–951. doi: 10.1111/j.1749-6632.1963.tb53746.x. [DOI] [PubMed] [Google Scholar]
  2. Badger K. S., Sussman H. H. Structural evidence that human liver and placental alkaline phosphatase isoenzymes are coded by different genes. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2201–2205. doi: 10.1073/pnas.73.7.2201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Butterworth P. J., Moss D. W. Action of neuraminidase on human kidney alkaline phosphatase. Nature. 1966 Feb 19;209(5025):805–806. doi: 10.1038/209805a0. [DOI] [PubMed] [Google Scholar]
  4. Danovitch S. H., Baer P. N., Laster L. Intestinal alkaline phosphatase activity in familial hypophosphatasia. N Engl J Med. 1968 Jun 6;278(23):1253–1260. doi: 10.1056/NEJM196806062782303. [DOI] [PubMed] [Google Scholar]
  5. FRASER D. Hypophosphatasia. Am J Med. 1957 May;22(5):730–746. doi: 10.1016/0002-9343(57)90124-9. [DOI] [PubMed] [Google Scholar]
  6. Fishman W. H., Inglis N. I., Stolbach L. L., Krant M. J. A serum alkaline phosphatase isoenzyme of human neoplastic cell origin. Cancer Res. 1968 Jan;28(1):150–154. [PubMed] [Google Scholar]
  7. Fishman W. H. Perspectives on alkaline phosphatase isoenzymes. Am J Med. 1974 May;56(5):617–650. doi: 10.1016/0002-9343(74)90631-7. [DOI] [PubMed] [Google Scholar]
  8. Ghosh N. K., Goldman S. S., Fishman W. H. Human placental alkaline phosphatase; a sialoprotein. Enzymologia. 1967 Aug 31;33(2):113–124. [PubMed] [Google Scholar]
  9. Hernández-Jodra M., Gancedo C. Isoenzymes of alkaline phosphatase in human meconium and small intestine during development. Enzyme. 1971;12(6):682–687. doi: 10.1159/000459603. [DOI] [PubMed] [Google Scholar]
  10. Higashino K., Otani R., Kudo S., Yamamura Y. A fetal intestinal-type alkaline phosphatase in hepatocellular carcinoma tissue. Clin Chem. 1977 Sep;23(9):1615–1623. [PubMed] [Google Scholar]
  11. Khattab M., Pfleiderer G. Alkaline phosphatase of human and calf small intestine. Purification and immunochemical characterization. Hoppe Seylers Z Physiol Chem. 1976 Mar;357(3):377–391. doi: 10.1515/bchm2.1976.357.1.377. [DOI] [PubMed] [Google Scholar]
  12. Komoda T., Sakagishi Y. Partial purification and some properties of human liver alkaline phosphatase. Biochim Biophys Acta. 1976 Jun 7;438(1):138–152. doi: 10.1016/0005-2744(76)90230-8. [DOI] [PubMed] [Google Scholar]
  13. Komoda T., Sakagishi Y. Partial purification of human intestinal alkaline phosphatase with affinity chromotography. Some properties and interaction of concanavalin A with alkaline phosphatase. Biochim Biophys Acta. 1976 Oct 11;445(3):645–660. doi: 10.1016/0005-2744(76)90117-0. [DOI] [PubMed] [Google Scholar]
  14. Lehmann F. G. Immunological relationship between human placental and intestinal alkaline phosphatase. Clin Chim Acta. 1975 Dec 15;65(3):257–269. doi: 10.1016/0009-8981(75)90251-x. [DOI] [PubMed] [Google Scholar]
  15. MORTON R. K. The purification of aklaline phosphatases of animal tissues. Biochem J. 1954 Aug;57(4):595–603. doi: 10.1042/bj0570595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miki K., Suzuki H., Iino S., Oda T., Hirano K., Sugiura M. Human fetal intestinal alkaline phosphatase. Clin Chim Acta. 1977 Aug 15;79(1):21–30. doi: 10.1016/0009-8981(77)90455-7. [DOI] [PubMed] [Google Scholar]
  17. Moss D. W., Eaton R. H., Smith J. K., Whitby L. G. Alteration in the electrophoretic mobility of alkaline phosphatases after treatment with neuraminidase. Biochem J. 1966 Mar;98(3):32C–33C. doi: 10.1042/bj0980032c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moss D. W., Shakespeare M. J., Thomas D. M. Observations on the heat-stability of alkaline phosphatase isoenzymes in serum. Clin Chim Acta. 1972 Aug;40(1):35–41. doi: 10.1016/0009-8981(72)90248-3. [DOI] [PubMed] [Google Scholar]
  19. Mulivor R. A., Mennuti M., Zackai E. H., Harris H. Prenatal diagnosis of hypophosphatasia; genetic, biochemical, and clinical studies. Am J Hum Genet. 1978 May;30(3):271–282. [PMC free article] [PubMed] [Google Scholar]
  20. Mulivor R. A., Plotkin L. I., Harris H. Differential inhibition of the products of the human alkaline phosphatase loci. Ann Hum Genet. 1978 Jul;42(1):1–13. doi: 10.1111/j.1469-1809.1978.tb00927.x. [DOI] [PubMed] [Google Scholar]
  21. NEALE F. C., CLUBB J. S., HOTCHKIS D., POSEN S. HEAT STABILITY OF HUMAN PLACENTAL ALKALINE PHOSPHATASE. J Clin Pathol. 1965 May;18:359–363. doi: 10.1136/jcp.18.3.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. ROBINSON J. C., PIERCE J. E. DIFFERENTIAL ACTION OF NEURAMINIDASE ON HUMAN SERUM ALKALINE PHOSPHATASES. Nature. 1964 Oct 31;204:472–473. doi: 10.1038/204472a0. [DOI] [PubMed] [Google Scholar]
  23. Robson E. B., Harris H. Further studies on the genetics of placental alkaline phosphatase. Ann Hum Genet. 1967 Jan;30(3):219–232. doi: 10.1111/j.1469-1809.1967.tb00023.x. [DOI] [PubMed] [Google Scholar]
  24. Sussman H. H., Small P. A., Jr, Cotlove E. Human alkaline phosphatase. Immunochemical identification of organ-specific isoenzymes. J Biol Chem. 1968 Jan 10;243(1):160–166. [PubMed] [Google Scholar]
  25. Suzuki H., Iino S., Endo Y., Torii M., Miki K. Tumor-specific alkaline phosphatase in hepatoma. Ann N Y Acad Sci. 1975 Aug 22;259:307–320. doi: 10.1111/j.1749-6632.1975.tb25427.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES