Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Aug;75(8):4011–4015. doi: 10.1073/pnas.75.8.4011

A factor from neurons increases the number of acetylcholine receptor aggregates on cultured muscle cells.

C N Christian, M P Daniels, H Sugiyama, Z Vogel, L Jacques, P G Nelson
PMCID: PMC392920  PMID: 279017

Abstract

There is an increase in the number of acetylcholine (AcCho) receptor aggregates on striated embryonic mouse myotubules when they are cocultured with clonal neuroblastoma-glioma hybrid cells. Medium conditioned by hybrid cells contains a factor which increases the number of AcCho receptor aggregates on myotubes cultured from mouse, rat or chick muscle. AcCho receptor-aggregating activity was present in medium conditioned by the neuroblastoma parent clone but was not detected in medium conditioned by cells of the parent glioma clone, fibroblasts, or HeLa cells. The factor increased the aggregation of AcCho receptors within 24 hr without a significant increase in the total number of AcCho receptors, and its action did not depend on myotube protein synthesis. The factor appears to rearrange the distribution of myotube AcCho receptors either by aggregating mobile AcCho receptors or by stabilizing labile receptor aggregates.

Full text

PDF
4011

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amano T., Hamprecht B., Kemper W. High activity of choline acetyltransferase induced in neuroblastoma x glia hybrid cells. Exp Cell Res. 1974 Apr;85(2):399–408. doi: 10.1016/0014-4827(74)90142-6. [DOI] [PubMed] [Google Scholar]
  2. Anderson M. J., Cohen M. W. Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J Physiol. 1977 Jul;268(3):757–773. doi: 10.1113/jphysiol.1977.sp011880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson M. J., Cohen M. W., Zorychta E. Effects of innervation on the distribution of acetylcholine receptors on cultured muscle cells. J Physiol. 1977 Jul;268(3):731–756. doi: 10.1113/jphysiol.1977.sp011879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Axelrod D., Ravdin P., Koppel D. E., Schlessinger J., Webb W. W., Elson E. L., Podleski T. R. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4594–4598. doi: 10.1073/pnas.73.12.4594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Betz W., Osborne M. Effects of innervation on acetylcholine sensitivity of developing muscle in vitro. J Physiol. 1977 Aug;270(1):75–88. doi: 10.1113/jphysiol.1977.sp011939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Changeux J. P., Danchin A. Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature. 1976 Dec 23;264(5588):705–712. doi: 10.1038/264705a0. [DOI] [PubMed] [Google Scholar]
  7. Christian C. N., Nelson P. G., Bullock P., Mullinax D., Nirenberg M. Pharmacologic responses of cells of a neuroblastoma X glioma hybrid clone and modulation of synapses between hybrid cells and mouse myotubes. Brain Res. 1978 May 26;147(2):261–276. doi: 10.1016/0006-8993(78)90839-9. [DOI] [PubMed] [Google Scholar]
  8. Christian C. N., Nelson P. G., Peacock J., Nirenberg M. Synapse formation between two clonal cell lines. Science. 1977 May 27;196(4293):995–998. doi: 10.1126/science.193191. [DOI] [PubMed] [Google Scholar]
  9. Crain S. M., Alfei L., Peterson E. R. Neuromuscular transmission in cultures of adult human and rodent skeletal muscle after innervation in vitro by fetal rodent spinal cord. J Neurobiol. 1970;1(4):471–489. doi: 10.1002/neu.480010409. [DOI] [PubMed] [Google Scholar]
  10. DIAMOND J., MILEDI R. A study of foetal and new-born rat muscle fibres. J Physiol. 1962 Aug;162:393–408. doi: 10.1113/jphysiol.1962.sp006941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Daniels M. P., Vogel Z. Immunoperoxidase staining of alpha-bungarotoxin binding sites in muscle endplates shows distribution of acetylcholine receptors. Nature. 1975 Mar 27;254(5498):339–341. doi: 10.1038/254339a0. [DOI] [PubMed] [Google Scholar]
  12. Fischbach G. D., Cohen S. A. The distribution of acetylcholine sensitivity over uninnervated and innervated muscle fibers grown in cell culture. Dev Biol. 1973 Mar;31(1):147–162. doi: 10.1016/0012-1606(73)90326-6. [DOI] [PubMed] [Google Scholar]
  13. Harris A. J. Inductive functions of the nervous system. Annu Rev Physiol. 1974;36:251–305. doi: 10.1146/annurev.ph.36.030174.001343. [DOI] [PubMed] [Google Scholar]
  14. Lomo T., Westgaard R. H. Control of ACh sensitivity in rat muscle fibers. Cold Spring Harb Symp Quant Biol. 1976;40:263–274. doi: 10.1101/sqb.1976.040.01.027. [DOI] [PubMed] [Google Scholar]
  15. McGee R., Simpson P., Christian C., Mata M., Nelson P., Nirenberg M. Regulation of acetylcholine release from neuroblastoma x glioma hybrid cells. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1314–1318. doi: 10.1073/pnas.75.3.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Minna J., Glazer D., Nirenberg M. Genetic dissection of neural properties using somatic cell hybrids. Nat New Biol. 1972 Feb 23;235(60):225–231. doi: 10.1038/newbio235225a0. [DOI] [PubMed] [Google Scholar]
  17. Nelson P. G., Christian C. N., Daniels M. P., Henkart M., Bullock P., Mullinax D., Nirenberg M. Formation of synapses between cells of a neuroblastoma X glioma hybrid clone and mouse myotubes. Brain Res. 1978 May 26;147(2):245–259. doi: 10.1016/0006-8993(78)90838-7. [DOI] [PubMed] [Google Scholar]
  18. Nelson P., Christian C., Nirenberg M. Synapse formation between clonal neuroblastoma X glioma hybrid cells and striated muscle cells. Proc Natl Acad Sci U S A. 1976 Jan;73(1):123–127. doi: 10.1073/pnas.73.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nicolson G. L. Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over surface components. Biochim Biophys Acta. 1976 Apr 13;457(1):57–108. doi: 10.1016/0304-4157(76)90014-9. [DOI] [PubMed] [Google Scholar]
  20. Peterson E. R., Crain S. M. Innervation in cultures of fetal rodent skeletal muscle by organotypic explants of spinal cord from different animals. Z Zellforsch Mikrosk Anat. 1970;106(1):1–21. doi: 10.1007/BF01027714. [DOI] [PubMed] [Google Scholar]
  21. Puro D. G., Nirenberg M. On the specificity of synapse formation. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3544–3548. doi: 10.1073/pnas.73.10.3544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ravdin P., Axelrod D. Fluorescent tetramethyl rhodamine derivatives of alpha-bungarotoxin: preparation, separation, and characterization. Anal Biochem. 1977 Jun;80(2):585–592. doi: 10.1016/0003-2697(77)90682-0. [DOI] [PubMed] [Google Scholar]
  23. Schreiner G. F., Unanue E. R. Membrane and cytoplasmic changes in B lymphocytes induced by ligand-surface immunoglobulin interaction. Adv Immunol. 1976;24:37–165. doi: 10.1016/s0065-2776(08)60329-6. [DOI] [PubMed] [Google Scholar]
  24. Steinbach J. H., Harris A. J., Patrick J., Schubert D., Heinemann S. Nerve-muscle interaction in vitro. Role of acetylcholine. J Gen Physiol. 1973 Sep;62(3):255–270. doi: 10.1085/jgp.62.3.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Steinbach J. H. Role of muscle activity in nerve-muscle interaction in vitro. Nature. 1974 Mar 1;248(5443):70–71. doi: 10.1038/248070a0. [DOI] [PubMed] [Google Scholar]
  26. Sytkowski A. J., Vogel Z., Nirenberg M. W. Development of acetylcholine receptor clusters on cultured muscle cells. Proc Natl Acad Sci U S A. 1973 Jan;70(1):270–274. doi: 10.1073/pnas.70.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Teichberg V. I., Sobel A., Changeux J. P. In vitro phosphorylation of the acetylcholine receptor. Nature. 1977 Jun 9;267(5611):540–542. doi: 10.1038/267540a0. [DOI] [PubMed] [Google Scholar]
  28. Vogel Z., Daniels M. P. Ultrastructure of acetylcholine receptor clusters on cultured muscle fibers. J Cell Biol. 1976 May;69(2):501–507. doi: 10.1083/jcb.69.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vogel Z., Sytkowski A. J., Nirenberg M. W. Acetylcholine receptors of muscle grown in vitro. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3180–3184. doi: 10.1073/pnas.69.11.3180. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES