Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 May 28;93(11):5615–5618. doi: 10.1073/pnas.93.11.5615

Direct interaction of the Wiskott-Aldrich syndrome protein with the GTPase Cdc42.

R Kolluri 1, K F Tolias 1, C L Carpenter 1, F S Rosen 1, T Kirchhausen 1
PMCID: PMC39296  PMID: 8643625

Abstract

Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency disorder with the most severe pathology in the T lymphocytes and platelets. The disease arises from mutations in the gene encoding the WAS protein. T lymphocytes of affected males with WAS exhibit a severe disturbance of the actin cytoskeleton, suggesting that the WAS protein could regulate its organization. We show here that WAS protein interacts with a member of the Rho family of GTPases, Cdc42. This interaction, which is guanosine 5'-triphosphate (GTP)-dependent, was detected in cell lysates, in transient transfections and with purified recombinant proteins. A weaker interaction was also detected with Rac1 using WAS protein from cell lysates. It was also found that different mutant WAS proteins from three affected males retained their ability to interact with Cdc42 and that the level of expression of the WAS protein in these mutants was only 2-5% of normal. Taken together these data suggest that the WAS protein might function as a signal transduction adaptor downstream of Cdc42, and in affected males, the cytoskeletal abnormalities may result from a defect in Cdc42 signaling.

Full text

PDF
5615

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALDRICH R. A., STEINBERG A. G., CAMPBELL D. C. Pedigree demonstrating a sex-linked recessive condition characterized by draining ears, eczematoid dermatitis and bloody diarrhea. Pediatrics. 1954 Feb;13(2):133–139. [PubMed] [Google Scholar]
  2. Aspenström P., Lindberg U., Hall A. Two GTPases, Cdc42 and Rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott-Aldrich syndrome. Curr Biol. 1996 Jan 1;6(1):70–75. doi: 10.1016/s0960-9822(02)00423-2. [DOI] [PubMed] [Google Scholar]
  3. Ayoub E. M., Dudding B. A., Cooper M. D. Dichotomy of antibody response to group A streptococcal antigens in Wiskott-Aldrich syndrome. J Lab Clin Med. 1968 Dec;72(6):971–979. [PubMed] [Google Scholar]
  4. Blaese R. M., Strober W., Brown R. S., Waldmann T. A. The Wiskott-Aldrich syndrome. A disorder with a possible defect in antigen processing or recognition. Lancet. 1968 May 18;1(7551):1056–1061. doi: 10.1016/s0140-6736(68)91411-6. [DOI] [PubMed] [Google Scholar]
  5. Cooper M. D., Chae H. P., Lowman J. T., Krivit W., Good R. A. Wiskott-Aldrich syndrome. An immunologic deficiency disease involving the afferent limb of immunity. Am J Med. 1968 Apr;44(4):499–513. doi: 10.1016/0002-9343(68)90051-x. [DOI] [PubMed] [Google Scholar]
  6. Derry J. M., Ochs H. D., Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell. 1994 Aug 26;78(4):635–644. doi: 10.1016/0092-8674(94)90528-2. [DOI] [PubMed] [Google Scholar]
  7. Geiger B., Rosen D., Berke G. Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes and target cells. J Cell Biol. 1982 Oct;95(1):137–143. doi: 10.1083/jcb.95.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greer W. L., Peacocke M., Siminovitch K. A. The Wiskott-Aldrich syndrome: refinement of the localization on Xp and identification of another closely linked marker locus, OATL1. Hum Genet. 1992 Feb;88(4):453–456. doi: 10.1007/BF00215681. [DOI] [PubMed] [Google Scholar]
  9. HUNTLEY C. C., DEES S. C. Eczema associated with thrombocytopenic purpura and purulent otitis media; report of five fatal cases. Pediatrics. 1957 Mar;19(3):351–361. [PubMed] [Google Scholar]
  10. Hall A. Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol. 1994;10:31–54. doi: 10.1146/annurev.cb.10.110194.000335. [DOI] [PubMed] [Google Scholar]
  11. Kenney D., Cairns L., Remold-O'Donnell E., Peterson J., Rosen F. S., Parkman R. Morphological abnormalities in the lymphocytes of patients with the Wiskott-Aldrich syndrome. Blood. 1986 Dec;68(6):1329–1332. [PubMed] [Google Scholar]
  12. Kolluri R., Shehabeldin A., Peacocke M., Lamhonwah A. M., Teichert-Kuliszewska K., Weissman S. M., Siminovitch K. A. Identification of WASP mutations in patients with Wiskott-Aldrich syndrome and isolated thrombocytopenia reveals allelic heterogeneity at the WAS locus. Hum Mol Genet. 1995 Jul;4(7):1119–1126. doi: 10.1093/hmg/4.7.1119. [DOI] [PubMed] [Google Scholar]
  13. Kozma R., Ahmed S., Best A., Lim L. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol. 1995 Apr;15(4):1942–1952. doi: 10.1128/mcb.15.4.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kupfer A., Singer S. J. Cell biology of cytotoxic and helper T cell functions: immunofluorescence microscopic studies of single cells and cell couples. Annu Rev Immunol. 1989;7:309–337. doi: 10.1146/annurev.iy.07.040189.001521. [DOI] [PubMed] [Google Scholar]
  15. Kupfer H., Monks C. R., Kupfer A. Small splenic B cells that bind to antigen-specific T helper (Th) cells and face the site of cytokine production in the Th cells selectively proliferate: immunofluorescence microscopic studies of Th-B antigen-presenting cell interactions. J Exp Med. 1994 May 1;179(5):1507–1515. doi: 10.1084/jem.179.5.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kwan S. P., Hagemann T. L., Radtke B. E., Blaese R. M., Rosen F. S. Identification of mutations in the Wiskott-Aldrich syndrome gene and characterization of a polymorphic dinucleotide repeat at DXS6940, adjacent to the disease gene. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4706–4710. doi: 10.1073/pnas.92.10.4706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kwan S. P., Lehner T., Hagemann T., Lu B., Blaese M., Ochs H., Wedgwood R., Ott J., Craig I. W., Rosen F. S. Localization of the gene for the Wiskott-Aldrich syndrome between two flanking markers, TIMP and DXS255, on Xp11.22-Xp11.3. Genomics. 1991 May;10(1):29–33. doi: 10.1016/0888-7543(91)90480-3. [DOI] [PubMed] [Google Scholar]
  18. Manser E., Leung T., Salihuddin H., Tan L., Lim L. A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42. Nature. 1993 May 27;363(6427):364–367. doi: 10.1038/363364a0. [DOI] [PubMed] [Google Scholar]
  19. Manser E., Leung T., Salihuddin H., Zhao Z. S., Lim L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature. 1994 Jan 6;367(6458):40–46. doi: 10.1038/367040a0. [DOI] [PubMed] [Google Scholar]
  20. Molina I. J., Kenney D. M., Rosen F. S., Remold-O'Donnell E. T cell lines characterize events in the pathogenesis of the Wiskott-Aldrich syndrome. J Exp Med. 1992 Sep 1;176(3):867–874. doi: 10.1084/jem.176.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Molina I. J., Sancho J., Terhorst C., Rosen F. S., Remold-O'Donnell E. T cells of patients with the Wiskott-Aldrich syndrome have a restricted defect in proliferative responses. J Immunol. 1993 Oct 15;151(8):4383–4390. [PubMed] [Google Scholar]
  22. Nobes C. D., Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995 Apr 7;81(1):53–62. doi: 10.1016/0092-8674(95)90370-4. [DOI] [PubMed] [Google Scholar]
  23. Nobes C., Hall A. Regulation and function of the Rho subfamily of small GTPases. Curr Opin Genet Dev. 1994 Feb;4(1):77–81. doi: 10.1016/0959-437x(94)90094-9. [DOI] [PubMed] [Google Scholar]
  24. Ochs H. D., Slichter S. J., Harker L. A., Von Behrens W. E., Clark R. A., Wedgwood R. J. The Wiskott-Aldrich syndrome: studies of lymphocytes, granulocytes, and platelets. Blood. 1980 Feb;55(2):243–252. [PubMed] [Google Scholar]
  25. Pardi R., Inverardi L., Rugarli C., Bender J. R. Antigen-receptor complex stimulation triggers protein kinase C-dependent CD11a/CD18-cytoskeleton association in T lymphocytes. J Cell Biol. 1992 Mar;116(5):1211–1220. doi: 10.1083/jcb.116.5.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Parsey M. V., Lewis G. K. Actin polymerization and pseudopod reorganization accompany anti-CD3-induced growth arrest in Jurkat T cells. J Immunol. 1993 Aug 15;151(4):1881–1893. [PubMed] [Google Scholar]
  27. Remold-O'Donnell E., Rosen F. S., Kenney D. M. Defects in Wiskott-Aldrich syndrome blood cells. Blood. 1996 Apr 1;87(7):2621–2631. [PubMed] [Google Scholar]
  28. Ridley A. J., Paterson H. F., Johnston C. L., Diekmann D., Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992 Aug 7;70(3):401–410. doi: 10.1016/0092-8674(92)90164-8. [DOI] [PubMed] [Google Scholar]
  29. Rivero-Lezcano O. M., Marcilla A., Sameshima J. H., Robbins K. C. Wiskott-Aldrich syndrome protein physically associates with Nck through Src homology 3 domains. Mol Cell Biol. 1995 Oct;15(10):5725–5731. doi: 10.1128/mcb.15.10.5725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  31. Stowers L., Yelon D., Berg L. J., Chant J. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5027–5031. doi: 10.1073/pnas.92.11.5027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sullivan K. E., Mullen C. A., Blaese R. M., Winkelstein J. A. A multiinstitutional survey of the Wiskott-Aldrich syndrome. J Pediatr. 1994 Dec;125(6 Pt 1):876–885. doi: 10.1016/s0022-3476(05)82002-5. [DOI] [PubMed] [Google Scholar]
  33. Symons M., Derry J. M., Karlak B., Jiang S., Lemahieu V., Mccormick F., Francke U., Abo A. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell. 1996 Mar 8;84(5):723–734. doi: 10.1016/s0092-8674(00)81050-8. [DOI] [PubMed] [Google Scholar]
  34. Tolias K. F., Cantley L. C., Carpenter C. L. Rho family GTPases bind to phosphoinositide kinases. J Biol Chem. 1995 Jul 28;270(30):17656–17659. doi: 10.1074/jbc.270.30.17656. [DOI] [PubMed] [Google Scholar]
  35. de Saint Basile G., Arveiler B., Fraser N. J., Boyd Y., Graig I. W., Griscelli G., Fischer A. Close linkage of hypervariable marker DXS255 to disease locus of Wiskott-Aldrich syndrome. Lancet. 1989 Dec 2;2(8675):1319–1321. doi: 10.1016/s0140-6736(89)91920-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES