Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Nov;75(11):5349–5352. doi: 10.1073/pnas.75.11.5349

Oxidation of the methionine residues of Escherichia coli ribosomal protein L12 decreases the protein's biological activity.

P Caldwell, D C Luk, H Weissbach, N Brot
PMCID: PMC392960  PMID: 364476

Abstract

Oxidation of ribosomal protein L12 with hydrogen peroxide converts the three methionine residues to methionine sulfoxide. The oxidized protein has a decreased ability to bind to ribosomes, interact with ribosomal protein L10, be precipitated by L12 antiserum, and serve as substrate for the acetylating enzyme that converts L12 to L7. Full activity of L12 is regained when the protein is reduced with 2-mercaptoethanol. Sedimentation equilibrium analysis shows that oxidation of the methionine residues in L12 causes the conversion of the protein from the dimer to the monomer form, and the results indicate that the dimer is the active form of the protein in the above reactions.

Full text

PDF
5349

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agthoven A. J., Maassen J. A., Schrier P. I., Möller W. Inhibition of EF-G dependent GTPase by an aminoterminal fragment of L7/L12. Biochem Biophys Res Commun. 1975 Jun 16;64(4):1184–1191. doi: 10.1016/0006-291x(75)90818-9. [DOI] [PubMed] [Google Scholar]
  2. Brot N., Boublik M., Yamasaki E., Weissbach H. The effect of various nucleotides on the helical nature of a ribosomal protein(s) from Escherichia coli. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2120–2121. doi: 10.1073/pnas.69.8.2120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brot N., Marcel R., Cupp L., Weissbach H. The enzymatic acetylation of ribosomal bound protein L 12 . Arch Biochem Biophys. 1973 Apr;155(2):475–477. doi: 10.1016/0003-9861(73)90140-9. [DOI] [PubMed] [Google Scholar]
  4. Brot N., Marcel R., Yamasaki E., Weissbach H. Further studies on the role of 50 S ribosomal proteins in protein synthesis. J Biol Chem. 1973 Oct 25;248(20):6952–6956. [PubMed] [Google Scholar]
  5. Brot N., Tate W. P., Caskey C. T., Weissbach H. The requirement for ribosomal proteins L7 and L12 in peptide-chain termination. Proc Natl Acad Sci U S A. 1974 Jan;71(1):89–92. doi: 10.1073/pnas.71.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dzionara M. Ribosomal proteins. Secondary structure of individual ribosomal proteins of E. coli studied by circular dichroism. FEBS Lett. 1970 Jun 8;8(4):197–200. doi: 10.1016/0014-5793(70)80262-9. [DOI] [PubMed] [Google Scholar]
  7. Fakunding J. L., Traut R. R., Hershey J. W. Dependence of initiation factor IF-2 activity on proteins L7 and L12 from Escherichia coli 50 S ribosomes. J Biol Chem. 1973 Dec 25;248(24):8555–8559. [PubMed] [Google Scholar]
  8. Gudkov A. T., Behlke J., Vtiurin N. N., Lim V. I. Tertiary and quaternary structure for ribosomal protein L7 in solution. FEBS Lett. 1977 Oct 1;82(1):125–129. doi: 10.1016/0014-5793(77)80901-0. [DOI] [PubMed] [Google Scholar]
  9. Hamel E., Koka M., Nakamoto T. Requirement of an Escherichia coli 50 S ribosomal protein component for effective interaction of the ribosome with T and G factors and with guanosine triphosphate. J Biol Chem. 1972 Feb 10;247(3):805–814. [PubMed] [Google Scholar]
  10. Hardy S. J. The stoichiometry of the ribosomal proteins of Escherichia coli. Mol Gen Genet. 1975 Oct 3;140(3):253–274. doi: 10.1007/BF00334270. [DOI] [PubMed] [Google Scholar]
  11. Kay A., Sander G., Grunberg-Manago M. Effect of ribosomal protein L12 upon initiation factor IF-2 activities. Biochem Biophys Res Commun. 1973 Apr 16;51(4):979–986. doi: 10.1016/0006-291x(73)90023-5. [DOI] [PubMed] [Google Scholar]
  12. Kung H. F., Fox J. E., Spears C., Brot N., Weissbach H. Studies on the role of ribosomal proteins L 7 and L 12 in the in vitro synthesis of -galactosidase. J Biol Chem. 1973 Jul 25;248(14):5012–5015. [PubMed] [Google Scholar]
  13. Lockwood A. H., Maitra U., Brot N., Weissbach H. The role of ribosomal proteins L7 and L-12 in polypeptide chain initiation in Escherichia coli. J Biol Chem. 1974 Feb 25;249(4):1213–1218. [PubMed] [Google Scholar]
  14. Mazumder R. Effect of thiostrepton on recycling of Escherichia coli initiation factor 2. Proc Natl Acad Sci U S A. 1973 Jul;70(7):1939–1942. doi: 10.1073/pnas.70.7.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Möller W., Castleman H., Terhorst C. P. Characterization of an acidic protein in 50 s ribosomes of E. coli. FEBS Lett. 1970 Jun 8;8(4):192–196. doi: 10.1016/0014-5793(70)80261-7. [DOI] [PubMed] [Google Scholar]
  16. Möller W., Groene A., Terhorst C., Amons R. 50-S ribosomal proteins. Purification and partial characterization of two acidic proteins, A 1 and A 2, isolated from 50-S ribosomes of Escherichia coli. Eur J Biochem. 1972 Jan 31;25(1):5–12. doi: 10.1111/j.1432-1033.1972.tb01660.x. [DOI] [PubMed] [Google Scholar]
  17. Osterberg R., Sjöberg B., Pettersson I., Liljas A., Kurland C. G. Small-angle x-ray scattering study of the protein complex of L7/L12 and L10 from Escherichia coli ribosomes. FEBS Lett. 1977 Jan 15;73(1):22–24. doi: 10.1016/0014-5793(77)80006-9. [DOI] [PubMed] [Google Scholar]
  18. Osterberg R., Sjöberg B. Small-angle X-ray scattering and crosslinking study of the proteins L7/L12 from Escherichia coli ribosomes. FEBS Lett. 1976 Jul 1;66(1):48–51. doi: 10.1016/0014-5793(76)80582-0. [DOI] [PubMed] [Google Scholar]
  19. Ramagopal S., Subramanian A. R. Growth-dependent regulation in production and utilization of acetylated ribosomal protein L7. J Mol Biol. 1975 Jun 5;94(4):633–641. doi: 10.1016/0022-2836(75)90327-7. [DOI] [PubMed] [Google Scholar]
  20. Rice R. H., Means G. E. Radioactive labeling of proteins in vitro. J Biol Chem. 1971 Feb 10;246(3):831–832. [PubMed] [Google Scholar]
  21. Sander G., Marsh R. C., Parmeggiani A. Isolation and characterization of two acidic proteins from the 50S subunit required for GTPase activities of both EF G and EF T. Biochem Biophys Res Commun. 1972 May 26;47(4):866–873. doi: 10.1016/0006-291x(72)90573-6. [DOI] [PubMed] [Google Scholar]
  22. Schrier P. I., Maassen J. A., Möller W. Involvement of 50S ribosomal proteins L6 and L10 in the ribosome dependent GTPase activity of elongation factor G. Biochem Biophys Res Commun. 1973 Jul 2;53(1):90–98. doi: 10.1016/0006-291x(73)91405-8. [DOI] [PubMed] [Google Scholar]
  23. Subramanian A. R. Copies of proteins L7 and L12 and heterogeneity of the large subunit of Escherichia coli ribosome. J Mol Biol. 1975 Jun 15;95(1):1–8. doi: 10.1016/0022-2836(75)90330-7. [DOI] [PubMed] [Google Scholar]
  24. Terhorst C., Möller W., Laursen R., Wittmann-Liebold B. Amino acid sequence of a 50 S ribosomal protein involved in both EFG and EFT dependent GTP-hydrolysis. FEBS Lett. 1972 Dec 15;28(3):325–328. doi: 10.1016/0014-5793(72)80742-7. [DOI] [PubMed] [Google Scholar]
  25. Truscott R. J., Augusteyn R. C. Oxidative changes in human lens proteins during senile nuclear cataract formation. Biochim Biophys Acta. 1977 May 27;492(1):43–52. doi: 10.1016/0005-2795(77)90212-4. [DOI] [PubMed] [Google Scholar]
  26. Weissbach H., Redfield B., Yamasaki E., Davis R. C., Jr, Pestka S., Brot N. Studies on the ribosomal sites involved in factors Tu and G-dependent reactions. Arch Biochem Biophys. 1972 Mar;149(1):110–117. doi: 10.1016/0003-9861(72)90304-9. [DOI] [PubMed] [Google Scholar]
  27. Wong K. P., Paradies H. H. Shape properties of proteins L7 and L12 from E. coli ribosomes. Biochem Biophys Res Commun. 1974 Nov 6;61(1):178–184. doi: 10.1016/0006-291x(74)90550-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES