Abstract
Sealed hemoglobin-free erythrocyte vesicles have been isolated. Imposition of transmembrane cation gradients increases the intensity of Raman scattering in the CH3-stretching region as observed with unsealed ghosts at temperatures greater than 38 degrees C and pH less than 7.0 [Verma, S. P. & Wallach, D. F. H. (1976) Proc. Natl. Acad. Sci. USA 73, 3358--3561]. Modifications in the amide I and amide III frequencies consistent with increased helicity of membrane proteins are observed upon imposition of a cation gradient. Spectrin-free vesicles also demonstrate cation gradient-sensitive intensity changes in the CH3-stretching region. However, no evidence for cation gradient-related protein conformation changes is found with these vesicles. The transmembrane potential of these vesicles has been altered by variations in anion composition and the electrogenic activity of Na+,K+-ATPase. The membrane potential was monitored by cyanine dye fluorescence. Imposition of a membrane potential (negative inside) also increased the intensity of Raman scattering in the CH3-stretching region. These results suggest that a transmembrane potential (negative inside) and/or cation gradient can energize membranes by compression of the apolar region and transfer of protein methyl residues into polar regions.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bieri V. G., Wallach D. F. Lipid-protein relationships in erythrocyte membranes revealed by paramagnetic quenching of protein fluorescence. Biochim Biophys Acta. 1976 Aug 16;443(2):198–205. doi: 10.1016/0005-2736(76)90503-4. [DOI] [PubMed] [Google Scholar]
- Bieri V. G., Wallach D. F. Variations of lipid-protein interactions in erythrocyte ghosts as a function of temperature and pH in physiological and non-physiological ranges. A study using a paramagnetic quenching of protein fluorescence by nitroxide lipid analogues. Biochim Biophys Acta. 1975 Oct 17;406(3):415–423. doi: 10.1016/0005-2736(75)90020-6. [DOI] [PubMed] [Google Scholar]
- Bigelow C. C. On the average hydrophobicity of proteins and the relation between it and protein structure. J Theor Biol. 1967 Aug;16(2):187–211. doi: 10.1016/0022-5193(67)90004-5. [DOI] [PubMed] [Google Scholar]
- Bunow M. R., Levin I. W. Comment on the carbon-hydrogen stretching region of vibrational Raman spectra of phospholipids. Biochim Biophys Acta. 1977 May 25;487(2):388–394. doi: 10.1016/0005-2760(77)90015-7. [DOI] [PubMed] [Google Scholar]
- Damadian R. Biological ion exchanger resins. Ann N Y Acad Sci. 1973 Mar 30;204:211–248. doi: 10.1111/j.1749-6632.1973.tb30782.x. [DOI] [PubMed] [Google Scholar]
- Evans E. A., Waugh R., Melnik L. Elastic area compressibility modulus of red cell membrane. Biophys J. 1976 Jun;16(6):585–595. doi: 10.1016/S0006-3495(76)85713-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
- Hoffman J. F., Laris P. C. Determination of membrane potentials in human and Amphiuma red blood cells by means of fluorescent probe. J Physiol. 1974 Jun;239(3):519–552. doi: 10.1113/jphysiol.1974.sp010581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kant J. A., Steck T. L. Specificity in the association of glyceraldehyde 3-phosphate dehydrogenase with isolated human erythrocyte membranes. J Biol Chem. 1973 Dec 25;248(24):8457–8464. [PubMed] [Google Scholar]
- Kolata G. B. Water structure and ion binding: a role in cell physiology? Science. 1976 Jun 18;192(4245):1220–1222. doi: 10.1126/science.192.4245.1220. [DOI] [PubMed] [Google Scholar]
- Laris P. C., Pershadsingh H. A., Johnstone R. M. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye. Biochim Biophys Acta. 1976 Jun 17;436(2):475–488. doi: 10.1016/0005-2736(76)90209-1. [DOI] [PubMed] [Google Scholar]
- Letter: Lenses and the compression of black lipid membranes by an electric field. Biophys J. 1975 Jan;15(1):77–81. doi: 10.1016/S0006-3495(75)85793-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lever J. E. Membrane potential and neutral amino acid transport in plasma membrane vesicles from Simian virus 40 transformed mouse fibroblasts. Biochemistry. 1977 Sep 20;16(19):4328–4334. doi: 10.1021/bi00638a031. [DOI] [PubMed] [Google Scholar]
- Ling G. N., Miller C., Ochsenfeld M. M. The physical state of solutes and water in living cells according to the association-induction hypothesis. Ann N Y Acad Sci. 1973 Mar 30;204:6–50. doi: 10.1111/j.1749-6632.1973.tb30770.x. [DOI] [PubMed] [Google Scholar]
- Lippert J. L., Tyminski D., Desmeules P. J. Determination of the secondary structure of proteins by laser Raman spectroscopy. J Am Chem Soc. 1976 Oct 27;98(22):7075–7080. doi: 10.1021/ja00438a057. [DOI] [PubMed] [Google Scholar]
- Mikkelsen R. B., Wallach D. F. Temperature sensitivity of the erythrocyte membrane potential as determined by cyanine dye fluorescence. Cell Biol Int Rep. 1977 Jan;1(1):51–55. doi: 10.1016/0309-1651(77)90009-1. [DOI] [PubMed] [Google Scholar]
- Packer L. Membrane structure in relation to function of energy-transducing organelles. Ann N Y Acad Sci. 1974 Feb 18;227:166–174. doi: 10.1111/j.1749-6632.1974.tb14380.x. [DOI] [PubMed] [Google Scholar]
- Pick U., Avron M. Measurement of transmembrane potentials in Rhodospirillum rubrum chromatophores with an oxacarbocyanine dye. Biochim Biophys Acta. 1976 Jul 9;440(1):189–204. doi: 10.1016/0005-2728(76)90123-7. [DOI] [PubMed] [Google Scholar]
- Sato B., Nishikida K., Samuels L. T., Tyler F. H. Electron spin resonance studies of erythrocytes from patients with Duchenne muscular dystrophy. J Clin Invest. 1978 Feb;61(2):251–259. doi: 10.1172/JCI108934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt-Ullrich R., Verma S. P., Wallach D. F. Anomalous side chain amidation in plasma membrane proteins of simian virus 40-transformed lymphocytes indicated by isoelectric focussing and laser Raman spectroscopy. Biochem Biophys Res Commun. 1975 Dec 1;67(3):1062–1069. doi: 10.1016/0006-291x(75)90782-2. [DOI] [PubMed] [Google Scholar]
- Sheetz M. P., Chan S. I. Proton magnetic resonance studies of whole human erythrocyte membranes. Biochemistry. 1972 Feb 15;11(4):548–555. doi: 10.1021/bi00754a011. [DOI] [PubMed] [Google Scholar]
- Sigrist-Nelson K., Murer H., Hopfer U. Active alanine transport in isolated brush border membranes. J Biol Chem. 1975 Jul 25;250(14):5674–5680. [PubMed] [Google Scholar]
- Sims P. J., Waggoner A. S., Wang C. H., Hoffman J. F. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry. 1974 Jul 30;13(16):3315–3330. doi: 10.1021/bi00713a022. [DOI] [PubMed] [Google Scholar]
- Steck T. L., Weinstein R. S., Straus J. H., Wallach D. F. Inside-out red cell membrane vesicles: preparation and purification. Science. 1970 Apr 10;168(3928):255–257. doi: 10.1126/science.168.3928.255. [DOI] [PubMed] [Google Scholar]
- Verma S. P., Wallach D. F. Carotenoids as a Raman-active probes of erythrocyte membrane structure. Biochim Biophys Acta. 1975 Aug 20;401(2):168–176. doi: 10.1016/0005-2736(75)90301-6. [DOI] [PubMed] [Google Scholar]
- Verma S. P., Wallach D. F. Changes of Raman scattering in the CU-stretching region during thermally induced unfolding of ribonuclease. Biochem Biophys Res Commun. 1977 Jan 24;74(2):473–479. doi: 10.1016/0006-291x(77)90328-x. [DOI] [PubMed] [Google Scholar]
- Verma S. P., Wallach D. F. Erythrocyte membranes undergo cooperative, pH-sensitive state transitions in the physiological temperature range: evidence from Raman spectroscopy. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3558–3561. doi: 10.1073/pnas.73.10.3558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verma S. P., Wallach D. F. Raman spectra of some saturated, unsaturated and deuterated C18 fatty acids in the HCH-deformation and CH-stretching regions. Biochim Biophys Acta. 1977 Feb 23;486(2):217–227. doi: 10.1016/0005-2760(77)90018-2. [DOI] [PubMed] [Google Scholar]
- Verma S. P., Wallach D. F., Schmidt-Ullrich R. The structure and thermotropism of thymocyte plasma membranes as revealed by laser-raman spectroscopy. Biochim Biophys Acta. 1975 Jul 18;394(4):633–645. doi: 10.1016/0005-2736(75)90148-0. [DOI] [PubMed] [Google Scholar]
- Weis-Fogh T., Anderson S. O. New molecular model for the long-range elasticity of elastin. Nature. 1970 Aug 15;227(5259):718–721. doi: 10.1038/227718a0. [DOI] [PubMed] [Google Scholar]
