Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Nov;75(11):5575–5579. doi: 10.1073/pnas.75.11.5575

Gene duplication in tetraploid fish: model for gene silencing at unlinked duplicated loci.

G S Bailey, R T Poulter, P A Stockwell
PMCID: PMC393009  PMID: 281706

Abstract

Several groups of fishes, including salmonids and catastomids, appear to have originated through genome duplication events. However, these two groups retain approximately 50% of the loci examined as functioning duplicates, despite the passage of 50 million years or more of mutation and selection. Although other effects are not excluded, this apparently slow rate of duplicate silencing can be explained in terms of the effects of selection against defective double homozygotes to unlinked duplicates. We have derived a computer simulation of genetic drift that affords direct evaluation of the effects of population size (N), mutation rate (micron), initial allele frequencies, back mutation, fitness, and time on the probability of fixation for null alleles at unlinked duplicate loci. The results show that this probability is approximately linearly related to population size for N greater than or equal to 10(3). Specifically, for naive populations, the time for 50% probability of gene silencing is approximately equal to 15N + micron-3/4 generations. The retention of 50% of the loci as functional duplicates may therefore result from the large effective size of salmonid and catastomid populations. The results also show that, under most conditions for populations of 2000--3000 or larger, unlinked duplicate loci will be sustained in the functional state longer than tandem (linked) duplicates and hence are available for evolution of new functions for a longer time.

Full text

PDF
5575

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allendorf F. W. Protein polymorphism and the rate of loss of duplicate gene expression. Nature. 1978 Mar 2;272(5648):76–78. doi: 10.1038/272076a0. [DOI] [PubMed] [Google Scholar]
  2. Allendorf F. W., Utter F. M. Gene Duplication within the Family Salmonidae: Disomic Inheritance of Two Loci Reported to Be Tetrasomic in Rainbow Trout. Genetics. 1973 Aug;74(4):647–654. doi: 10.1093/genetics/74.4.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allendorf F. W., Utter F. M. Gene duplication in the family Salmonidae. III. Linkage between two duplicated loci coding for aspartate aminotransferase in the cutthroat trout (Salmo clarki). Hereditas. 1976;82(1):19–24. doi: 10.1111/j.1601-5223.1976.tb01532.x. [DOI] [PubMed] [Google Scholar]
  4. Bailey G. S., Lim S. T. Evolution of duplicated lactate dehydrogenase isozymes in salmon. Abortive ternary complex formation and breakdown. J Biol Chem. 1977 Aug 25;252(16):5708–5715. [PubMed] [Google Scholar]
  5. Bailey G. S., Wilson A. C., Halver J. E., Johnson C. L. Multiple forms of supernatant malate dehydrogenase in salmonid fishes. J Biol Chem. 1970 Nov 25;245(22):5927–5940. [PubMed] [Google Scholar]
  6. Bailey G. S., Wilson A. C. Homologies between isoenzymes of fishes and those of higher vertebrates. Evidence for multiple H-4 lactate dehydrogenases in trout. J Biol Chem. 1968 Nov 25;243(22):5843–5853. [PubMed] [Google Scholar]
  7. Davisson M. T., Wright J. E., Atherton L. M. Cytogenetic analysis of pseudolinkage of ldh Loci in the teleost genus salvelinus. Genetics. 1973 Apr;73(4):645–658. doi: 10.1093/genetics/73.4.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferris S. D., Whitt G. S. Duplicate gene expression in diploid and tetraploid loaches (Cypriniformes, Cobitidae). Biochem Genet. 1977 Dec;15(11-12):1097–1112. doi: 10.1007/BF00484500. [DOI] [PubMed] [Google Scholar]
  9. Ferris S. D., Whitt G. S. Loss of duplicate gene expression after polyploidisation. Nature. 1977 Jan 20;265(5591):258–260. doi: 10.1038/265258a0. [DOI] [PubMed] [Google Scholar]
  10. Kimura M., Ohta T. On some principles governing molecular evolution. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2848–2852. doi: 10.1073/pnas.71.7.2848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lebherz H. G., Rutter W. J. Distribution of fructose diphosphate aldolase variants in biological systems. Biochemistry. 1969 Jan;8(1):109–121. doi: 10.1021/bi00829a016. [DOI] [PubMed] [Google Scholar]
  12. Lim S. T., Bailey G. S. Gene duplication in salmonid fishes: evidence for duplicated but catalytically equivalent A4 lactate dehydrogenases. Biochem Genet. 1977 Aug;15(7-8):707–721. doi: 10.1007/BF00484099. [DOI] [PubMed] [Google Scholar]
  13. Lim S. T., Kay R. M., Bailey G. S. Lactate dehydrogenase isozymes of salmonid fish. Evidence for unique and rapid functional divergence of duplicated H-4 lactate dehydrogenases. J Biol Chem. 1975 Mar 10;250(5):1790–1800. [PubMed] [Google Scholar]
  14. Massaro E. J., Markert C. L. Isozyme patterns of salmoid fishes: evidence for multiple cistrons for lactate dehydrogenase polypeptides. J Exp Zool. 1968 Jun;168(2):223–238. doi: 10.1002/jez.1401680210. [DOI] [PubMed] [Google Scholar]
  15. Ohno S., Wolf U., Atkin N. B. Evolution from fish to mammals by gene duplication. Hereditas. 1968;59(1):169–187. doi: 10.1111/j.1601-5223.1968.tb02169.x. [DOI] [PubMed] [Google Scholar]
  16. Pederson D. G. An approximate method of sampling a multinomial population. Biometrics. 1973 Dec;29(4):814–821. [PubMed] [Google Scholar]
  17. Roberts F. L., Wohnus J. F., Ono S. Phosphoglucomutase polymorphis in the rainbow trout, Salmo gairdneri. Experientia. 1969 Oct 15;25(10):1109–1110. doi: 10.1007/BF01901463. [DOI] [PubMed] [Google Scholar]
  18. Ruth R. C., Soja D. M., Wold F. Purification and characterization of enolases from coho (Oncorhynchus kisutch) and chum (Oncorhynchus keta) salmon. Arch Biochem Biophys. 1970 Sep;140(1):1–10. doi: 10.1016/0003-9861(70)90002-0. [DOI] [PubMed] [Google Scholar]
  19. Stegeman J. J., Goldberg E. Inheritance of hexose 6-phosphate dehydrogenase polymorphism in brook trout. Biochem Genet. 1972 Dec;7(3):279–288. doi: 10.1007/BF00484828. [DOI] [PubMed] [Google Scholar]
  20. Uyeno T., Smith G. R. Tetraploid origin of the karyotype of catostomid fishes. Science. 1972 Feb 11;175(4022):644–646. doi: 10.1126/science.175.4022.644. [DOI] [PubMed] [Google Scholar]
  21. Wilkins N. P. The sub-unit composition of the haemoglobins of the Atlantic salmon (Salmo salar L.). Biochim Biophys Acta. 1970 Jul 27;214(1):52–63. doi: 10.1016/0005-2795(70)90069-3. [DOI] [PubMed] [Google Scholar]
  22. Yamauchi T., Goldberg E. Glucose 6-phosphate dehydrogenase from brook, lake, and splake trout: an isozymic and immunological study. Biochem Genet. 1973 Oct;10(2):121–134. doi: 10.1007/BF00485760. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES