Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Nov;75(11):5718–5722. doi: 10.1073/pnas.75.11.5718

Isolation of host-range variants of mouse mammary tumor viruses that efficiently infect cells in vitro

David K Howard 1, Jeffrey Schlom 1,*
PMCID: PMC393040  PMID: 214796

Abstract

Host-range variants of mouse mammary tumor virus (MMTV) have been isolated that have the ability to productively infect cells in vitro with high efficiency (at multiplicities of infection ≤1) and with extremely short latent periods to the production of de novo virus (as short as 4 days after infection). These variants of the highly oncogenic MMTV of RIII, C3H, and GR mice were obtained by serial virus passage in feline cells. The resultant variant stocks react in group-specific radioimmunoassays for the MMTV major external glycoprotein (gp52) and major internal protein (p28), possess a protein profile similar to that of wild-type MMTV, and contain a virion-associated DNA polymerase with a magnesium cation preference. Addition of dexamethasone and insulin to culture media enhances the titer of de novo MMTV to levels of approximately 1010 particles per 75-cm2 flask (containing 5 × 106 cells) per 24 hr. Variant stocks exhibit no evidence of contamination with either murine or feline type C retroviruses, as assayed by various techniques. The variants of MMTV derived from C3H and RIII mice exhibit differential host ranges that include the ability to productively infect feline, canine, bat, mink, murine, and human cells. Use of these MMTV host-range variants now facilitates the study of the complete replicative cycle of MMTV as well as an elucidation of the interaction of MMTV with various hormones, physical or chemical carcinogens, and tumor promoters in the initiation and promotion of mammary neoplasia.

Keywords: mammary neoplasia, RNA tumor viruses, type B viruses, viral variants, mouse mammary tumor virus infectivity

Full text

PDF
5718

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbacid M., Stephenson J. R., Aaronson S. A. Evolutionary relationships between gag gene-coded proteins of murine and primate endogenous type C RNA viruses. Cell. 1977 Apr;10(4):641–648. doi: 10.1016/0092-8674(77)90097-6. [DOI] [PubMed] [Google Scholar]
  2. Crandell R. A., Fabricant C. G., Nelson-Rees W. A. Development, characterization, and viral susceptibility of a feline (Felis catus) renal cell line (CRFK). In Vitro. 1973 Nov-Dec;9(3):176–185. doi: 10.1007/BF02618435. [DOI] [PubMed] [Google Scholar]
  3. Dion A. S., Vaidya A. B., Fout G. S. Cation preferences for poly(rC)-oligo(dG)-directed DNA synthesis by RNA tumor viruses and human milk particulates. Cancer Res. 1974 Dec;34(12):3509–3515. [PubMed] [Google Scholar]
  4. Drohan W., Kettmann R., Colcher D., Schlom J. Isolation of the mouse mammary tumor virus sequences not transmitted as germinal provirus in the C3H and RIII mouse strains. J Virol. 1977 Mar;21(3):986–995. doi: 10.1128/jvi.21.3.986-995.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fischinger P. J., Blevins C. S., Dunlop N. M. Genomic masking of nondefective recombinant murine leukemia virus in Moloney virus stocks. Science. 1978 Aug 4;201(4354):457–459. doi: 10.1126/science.663667. [DOI] [PubMed] [Google Scholar]
  6. Gautsch J. W., Lerner R., Howard D., Teramoto Y. A., Schlom J. Strain-specific markers for the major structural proteins of highly oncogenic murine mammary tumor viruses by tryptic peptide analyses. J Virol. 1978 Sep;27(3):688–699. doi: 10.1128/jvi.27.3.688-699.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Howard D. K., Colcher D., Teramoto Y. A., Young J. M., Schlom J. Characterization of mouse mammary tumor viruses propagated in heterologous cells. Cancer Res. 1977 Aug;37(8 Pt 1):2696–2704. [PubMed] [Google Scholar]
  8. Kimball P. C., Michalides R., Colcher D., Schlom J. Characterization of mouse mammary tumor viruses from primary tumor cell cultures. II. Biochemical and biophysical studies. J Natl Cancer Inst. 1976 Jan;56(1):119–124. doi: 10.1093/jnci/56.1.119. [DOI] [PubMed] [Google Scholar]
  9. Lasfargues E. Y., Lasfargues J. C., Dion A. S., Greene A. E., Moore D. H. Experimental infection of a cat kidney cell line with the mouse mammary tumor virus. Cancer Res. 1976 Jan;36(1):67–72. [PubMed] [Google Scholar]
  10. McGrath C. M. Replication of mammary tumor virus in tumor cell cultures: dependence on hormone-induced cellular organization. J Natl Cancer Inst. 1971 Aug;47(2):455–467. [PubMed] [Google Scholar]
  11. Michalides R., Schlom J., Dahlberg J., Perk K. Biochemical properties of the bromodeoxyuridine-induced guinea pig virus. J Virol. 1975 Oct;16(4):1039–1050. doi: 10.1128/jvi.16.4.1039-1050.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Owens R. B., Hackett A. J. Tissue culture studies of mouse mammary tumor cells and associated viruses. J Natl Cancer Inst. 1972 Nov;49(5):1321–1332. [PubMed] [Google Scholar]
  13. Parks W. P., Scolnick E. M., Kozikowski E. H. Dexamethasone stimulation of murine mammary tumor virus expression: a tissue culture source of virus. Science. 1974 Apr 12;184(4133):158–160. doi: 10.1126/science.184.4133.158. [DOI] [PubMed] [Google Scholar]
  14. Ringold G., Lasfargues E. Y., Bishop J. M., Varmus H. E. Production of mouse mammary tumor virus by cultured cells in the absence and presence of hormones: assay by molecular hybridization. Virology. 1975 May;65(1):135–147. doi: 10.1016/0042-6822(75)90014-8. [DOI] [PubMed] [Google Scholar]
  15. Schochetman G., Schlom J. Independent polypeptide chain initiation sites for the synthesis of different classes of proteins for an RNA tumor virus: mouse mammary tumor virus. Virology. 1976 Sep;73(2):431–441. doi: 10.1016/0042-6822(76)90404-9. [DOI] [PubMed] [Google Scholar]
  16. Scolnick E. M., Young H. A., Parks W. P. Biochemical and physiological mechanisms in glucocorticoid hormone induction of mouse mammary tumor virus. Virology. 1976 Jan;69(1):148–156. doi: 10.1016/0042-6822(76)90202-6. [DOI] [PubMed] [Google Scholar]
  17. Teramoto Y. A., Kufe D., Schlom J. Multiple antigenic determinants on the major surface glycoprotein of murine mammary tumor viruses. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3564–3568. doi: 10.1073/pnas.74.8.3564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Teramoto Y. A., Schlom J. Radioimmunoassays that demonstrate type-specific and group-specific antigenic reactivities for the major internal structural protein of murine mammary tumor viruses. Cancer Res. 1978 Jul;38(7):1990–1995. doi: 10.1203/00006450-199501000-00002. [DOI] [PubMed] [Google Scholar]
  19. Vaidya A. B., Lasfargues E. Y., Heubel G., Lasfargues J. C., Moore D. H. Murine mammary tumor virus: characterization of infection of nonmurine cells. J Virol. 1976 Jun;18(3):911–917. doi: 10.1128/jvi.18.3.911-917.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vogt P. K. Avian tumor viruses. Adv Virus Res. 1965;11:293–385. doi: 10.1016/s0065-3527(08)60549-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES