Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Dec;75(12):5860–5863. doi: 10.1073/pnas.75.12.5860

Structure of the oxygen adduct intermediate in the bacterial luciferase reaction: 13C nuclear magnetic resonance determination*

Sandro Ghisla , J Woodland Hastings , Vincent Favaudon §, Jean-Marc Lhoste §
PMCID: PMC393075  PMID: 16592595

Abstract

By using FMN enriched in 13C (90%) at position C-4a, we have conclusively shown that the reaction of molecular oxygen with bacterial luciferase-bound FMNH2 forms an adduct at the 4a position. Consistent with this are 13C NMR studies of FMN and other flavin compounds which show that this carbon should be unusually reactive in the reduced 1,5-dihydroflavins with respect to electrophilic attacks.

Keywords: subzero temperature, oxidation-reduction, substituted flavins, flavoproteins

Full text

PDF
5860

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allerhand A., Childers R. F., Oldfield E. Natrual-abundance carbon-13 nuclear magnetic resonance studies in 20-mm sample tubes. Observation of numerous single-carbon resonances of hen egg-white lysozyme. Biochemistry. 1973 Mar 27;12(7):1335–1341. doi: 10.1021/bi00731a013. [DOI] [PubMed] [Google Scholar]
  2. Baldwin T. O., Nicoli M. Z., Becvar J. E., Hastings J. W. Bacterial luciferase. Binding of oxidized flavin mononucleotide. J Biol Chem. 1975 Apr 25;250(8):2763–2768. [PubMed] [Google Scholar]
  3. Becvar J. E., Tu S. C., Hastings J. W. Activity and stability of the luciferase--flavin intermediate. Biochemistry. 1978 May 2;17(9):1807–1812. doi: 10.1021/bi00602a036. [DOI] [PubMed] [Google Scholar]
  4. Breitmaier E., Voelter W. A 13 C nuclear-magnetic-resonance study of the enzyme cofactor flavin-adenine dinucleotide. Eur J Biochem. 1972 Dec 4;31(2):234–238. doi: 10.1111/j.1432-1033.1972.tb02525.x. [DOI] [PubMed] [Google Scholar]
  5. Ehrenberg A., Müller F., Hemmerich P. Basicity, visible spectra, and electron spin resonance of flavosemiquinone anions. Eur J Biochem. 1967 Oct;2(3):286–293. doi: 10.1111/j.1432-1033.1967.tb00137.x. [DOI] [PubMed] [Google Scholar]
  6. Entsch B., Ballou D. P., Massey V. Flavin-oxygen derivatives involved in hydroxylation by p-hydroxybenzoate hydroxylase. J Biol Chem. 1976 May 10;251(9):2550–2563. [PubMed] [Google Scholar]
  7. Favaudon V. Oxidation kinetics of 1,5-dihydroflavin by oxygen in non-aqueous solvent. Eur J Biochem. 1977 Aug 15;78(1):293–307. doi: 10.1111/j.1432-1033.1977.tb11740.x. [DOI] [PubMed] [Google Scholar]
  8. Ghisla S., Entsch B., Massey V., Husein M. On the structure of flavin-oxygen intermediates involved in enzymatic reactions. Eur J Biochem. 1977 Jun 1;76(1):139–148. doi: 10.1111/j.1432-1033.1977.tb11579.x. [DOI] [PubMed] [Google Scholar]
  9. Ghisla S., Massey V., Lhoste J. M., Mayhew S. G. Fluorescence and optical characteristics of reduced flavines and flavoproteins. Biochemistry. 1974 Jan 29;13(3):589–597. doi: 10.1021/bi00700a029. [DOI] [PubMed] [Google Scholar]
  10. Hastings J. W., Balny C., Peuch C. L., Douzou P. Spectral properties of an oxygenated luciferase-flavin intermediate isolated by low-temperature chromatography. Proc Natl Acad Sci U S A. 1973 Dec;70(12 Pt 1-2):3468–3472. doi: 10.1073/pnas.70.12.3468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hastings J. W., Balny C. The oxygenated bacterial luciferase-flavin intermediate. Reaction products via the light and dark pathways. J Biol Chem. 1975 Sep 25;250(18):7288–7293. [PubMed] [Google Scholar]
  12. Kawano K., Ohishi N., Suzuki A. T., Kyogoku Y., Yagi K. Nitrogen-15 and carbon-13 nuclear magnetic resonance of reduced flavins. Comparative study with oxidized flavins. Biochemistry. 1978 Sep 5;17(18):3854–3859. doi: 10.1021/bi00611a027. [DOI] [PubMed] [Google Scholar]
  13. Kemal C., Bruice T. C. Simple synthesis of a 4a-hydroperoxy adduct of a 1,5-dihydroflavine: preliminary studies of a model for bacterial luciferase. Proc Natl Acad Sci U S A. 1976 Apr;73(4):995–999. doi: 10.1073/pnas.73.4.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mayhew S. G., Strating M. J. Properties of immobilized flavodoxin from Peptostreptococcus elsdenii. An affinity ligand for the purification of riboflavin 5'-phosphate (FMN) and its analogues. Eur J Biochem. 1975 Nov 15;59(2):539–544. doi: 10.1111/j.1432-1033.1975.tb02480.x. [DOI] [PubMed] [Google Scholar]
  15. Mayhew S. G. Studies on flavin binding in flavodoxins. Biochim Biophys Acta. 1971 May 12;235(2):289–302. doi: 10.1016/0005-2744(71)90207-5. [DOI] [PubMed] [Google Scholar]
  16. Meighen E. A., Hastings J. W. Binding site determination from kinetic data. Reduced flavin mononucleotide binding to bacterial luciferase. J Biol Chem. 1971 Dec 25;246(24):7666–7674. [PubMed] [Google Scholar]
  17. Scola-Nagelschneider G., Hemmerich P. Synthesis, separation, identification and interconversion of riboflavin phosphates and their acetyl derivatives: a reinvestigation. Eur J Biochem. 1976 Jul 15;66(3):567–577. doi: 10.1111/j.1432-1033.1976.tb10583.x. [DOI] [PubMed] [Google Scholar]
  18. Ulitzur S., Hastings J. W. Myristic acid stimulation of bacterial bioluminescence in "aldehyde" mutants. Proc Natl Acad Sci U S A. 1978 Jan;75(1):266–269. doi: 10.1073/pnas.75.1.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Walker W. H., Ehrenberg A., Lhoste J. M. 13C studies on flavin free radicals. Biochim Biophys Acta. 1970 Jul 21;215(1):166–175. doi: 10.1016/0304-4165(70)90399-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES