Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Dec;75(12):5955–5959. doi: 10.1073/pnas.75.12.5955

Rapid conformational changes of cytochrome P-450: Effect of dimyristoyl lecithin

Tian Yow Tsong *, Chung S Yang
PMCID: PMC393095  PMID: 282617

Abstract

Binding of benzphetamine to purified microsomal cytochrome P-450 from rat liver causes a shift in the heme spin state of the protein to favor the high-spin form. This shift is strongly temperature dependent. A rapid temperature jump of a cytochrome P-450/ε benzphetamine mixture, monitored by changes in the Soret absorptions of the heme, reveals two relaxation processes: one in a 50-msec time range (τf) and the other in a 0.3-sec time range (τs). Both relaxations reflect conformational changes of the protein after the substrate binding. No bimolecular reaction of benzphetamine and the enzyme has been resolved. This indicates that there is no absorption change of the heme associated with the initial binding. In the presence of dimyristoyl lecithin, at 25°C τf decreases by nearly one order of magnitude whereas τs decreases to one-third. The enhancement of rates by added phospholipid is both temperature- and concentration-dependent: rates are accelerated only above the gel-liquid crystalline transition temperature, and this effect saturates near the enzyme/lipid ratio of 1:20. In contrast, the lipid does not have significant effect on the equilibrium binding curve of the substrate. These results suggest that the lipid may form an envelope around the enzyme and, depending on its crystalline state, regulates the rate of the substrate-induced conformational changes of cytochrome P-450.

Keywords: temperature jump, membrane protein, phospholipid, phase transition

Full text

PDF
5955

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Duppel W., Ullrich V. Membrane effects on drug monooxygenation activity in hepatic microsomes. Biochim Biophys Acta. 1976 Mar 19;426(3):399–407. doi: 10.1016/0005-2736(76)90385-0. [DOI] [PubMed] [Google Scholar]
  2. Ebel R. E., O'Keeffe D. H., Peterson J. A. Substrate binding to hepatic microsomal cytochrome P-450. Influence of the microsomal membrane. J Biol Chem. 1978 Jun 10;253(11):3888–3897. [PubMed] [Google Scholar]
  3. Griffin B. W., Peterson J. A., Werringloer J., Estabrook R. W. Chemistry of soluble and membrane-bound cytochrome P-450. Ann N Y Acad Sci. 1975 Apr 15;244:107–131. doi: 10.1111/j.1749-6632.1975.tb41526.x. [DOI] [PubMed] [Google Scholar]
  4. Haugen D. A., Coon M. J. Properties of electrophoretically homogeneous phenobarbital-inducible and beta-naphthoflavone-inducible forms of liver microsomal cytochrome P-450. J Biol Chem. 1976 Dec 25;251(24):7929–7939. [PubMed] [Google Scholar]
  5. Hesketh T. R., Smith G. A., Houslay M. D., McGill K. A., Birdsall N. J., Metcalfe J. C., Warren G. B. Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin. Biochemistry. 1976 Sep 21;15(19):4145–4151. doi: 10.1021/bi00664a002. [DOI] [PubMed] [Google Scholar]
  6. Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969 Jan;8(1):344–352. doi: 10.1021/bi00829a048. [DOI] [PubMed] [Google Scholar]
  7. Jost P. C., Griffith O. H., Capaldi R. A., Vanderkooi G. Evidence for boundary lipid in membranes. Proc Natl Acad Sci U S A. 1973 Feb;70(2):480–484. doi: 10.1073/pnas.70.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lee A. G., Birdsall N. J., Metcalfe J. C., Toon P. A., Warren G. B. Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes. Biochemistry. 1974 Aug 27;13(18):3699–3705. doi: 10.1021/bi00715a013. [DOI] [PubMed] [Google Scholar]
  9. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. II. SOLUBILIZATION, PURIFICATION, AND PROPERTIES. J Biol Chem. 1964 Jul;239:2379–2385. [PubMed] [Google Scholar]
  10. Overath P., Schairer H. U., Stoffel W. Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A. 1970 Oct;67(2):606–612. doi: 10.1073/pnas.67.2.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Raison J. K. The influence of temperature-induced phase changes on the kinetics of respiratory and other membrane-associated enzyme systems. J Bioenerg. 1973 Jan;4(1):285–309. doi: 10.1007/BF01516063. [DOI] [PubMed] [Google Scholar]
  12. Sligar S. G. Coupling of spin, substrate, and redox equilibria in cytochrome P450. Biochemistry. 1976 Nov 30;15(24):5399–5406. doi: 10.1021/bi00669a029. [DOI] [PubMed] [Google Scholar]
  13. Strittmatter P., Rogers M. J. Apparent dependence of interactions between cytochrome b5 and cytochrome b5 reductase upon translational diffusion in dimyristoyl lecithin liposomes. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2658–2661. doi: 10.1073/pnas.72.7.2658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tsong T. Y., Kanehisa M. I. Relaxation phenomena in aqueous dispersions of synthetic lecithins. Biochemistry. 1977 Jun 14;16(12):2674–2680. doi: 10.1021/bi00631a014. [DOI] [PubMed] [Google Scholar]
  15. Tsong T. Y., Tsong T. T., Kingsley E., Siliciano R. Relaxation phenomena in human erythrocyte suspensions. Biophys J. 1976 Sep;16(9):1091–1104. doi: 10.1016/S0006-3495(76)85757-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yang C. S., Strickhart F. S., Kicha L. P. The effect of temperature on monoxygenase reactions in the microsomal membrane. Biochim Biophys Acta. 1977 Mar 1;465(2):362–370. doi: 10.1016/0005-2736(77)90085-2. [DOI] [PubMed] [Google Scholar]
  17. Yang C. S. The organization and interaction of monoxygenase enzymes in the microsomal membrane. Life Sci. 1977 Oct 15;21(8):1047–1057. doi: 10.1016/0024-3205(77)90102-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES