Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Dec;75(12):6159–6162. doi: 10.1073/pnas.75.12.6159

Argininosuccinic aciduria: assignment of the argininosuccinate lyase gene to the pter to q22 region of human chromosome 7 by bioautography.

S L Naylor, R J Klebe, T B Shows
PMCID: PMC393138  PMID: 282632

Abstract

Argininosuccinic aciduria, an autosomal recessive disorder of the urea cycle in humans, is associated with a deficiency of argininosuccinate lyase (ASL; L-argininosuccinate arginine-lyase, EC 4.3.2.1). ASL activity was visualized on gels after electrophoresis by a new method, termed bioautography. Bioautography involves the use of mutant bacteria to visualize the location of mammalian enzymes after zone electrophoresis. By this technique, human ASL migrated to a position different from mouse ASL, while a survey of mouse strains, tissues, and tissue culture cell extracts demonstrated the same electrophoretic form and no genetic variants of mouse ASL. Identifying human ASL, by bioautography in human-mouse somatic cell hybrids has made it possible to regionally locate the ASL gene on human chromosome 7. The human ASL phenotype segregated concordantly with the human enzyme beta-glucoronidase (GUS; beta-D-glucoronide glucuronosohydrolase, EC 3.2.1.31) in cell hybrids, but showed discordant segregation with 32 other enzyme markers representing 23 linkage groups. The gene for GUS has been assigned to chromosome 7 in humans, and cosegregation (synteny) of ASL and GUS demonstrates the assignment of ASL to chromosome 7. Regional location of ASL and GUS to the pter to q22 region of chromosome 7 was achieved in hybrids segregating a 7/9 translocation.

Full text

PDF
6159

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann B. J., Low K. B., Taylor A. L. Recalibrated linkage map of Escherichia coli K-12. Bacteriol Rev. 1976 Mar;40(1):116–167. doi: 10.1128/br.40.1.116-167.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carritt B., Goldfarb P. S., Hooper M. L., Slack C. Chromosome assignment of a human gene for argininosuccinate synthetase expression in Chinese hamsterxhuman somatic cell hybrids. Exp Cell Res. 1977 Apr;106(1):71–78. doi: 10.1016/0014-4827(77)90242-7. [DOI] [PubMed] [Google Scholar]
  3. Carritt B. Somatic cell genetic evidence for the presence of a gene for citrullinemia on human chromosome 9. Cytogenet Cell Genet. 1977;19(1):44–48. doi: 10.1159/000130793. [DOI] [PubMed] [Google Scholar]
  4. Chen S. H., Malcolm L. A., Yoshida A., Giblett E. R. Phosphoglycerate kinase: an X-linked polymorphism in man. Am J Hum Genet. 1971 Jan;23(1):87–91. [PMC free article] [PubMed] [Google Scholar]
  5. Creagan R. P., Tischfield J. A., Nichols E. A., Ruddle F. H. Letter: Autosomal assignment of the gene for the form of adenosine deaminase which is deficient in patients with combined immunodeficiency syndrome. Lancet. 1973 Dec 22;2(7843):1449–1449. doi: 10.1016/s0140-6736(73)92850-x. [DOI] [PubMed] [Google Scholar]
  6. Elsevier S. M., Kucherlapati R. S., Nichols E. A., Creagan R. P., Giles R. E., Ruddle F. H., Willecke K., McDougall J. K. Assignment of the gene for galactokinase to human chromosome 17 and its regional localisation to band q21-22. Nature. 1974 Oct 18;251(5476):633–636. doi: 10.1038/251633a0. [DOI] [PubMed] [Google Scholar]
  7. Glick N. R., Snodgrass P. J., Schafer I. A. Neonatal argininosuccinic aciduria with normal brain and kidney but absent liver argininosuccinate lyase activity. Am J Hum Genet. 1976 Jan;28(1):22–30. [PMC free article] [PubMed] [Google Scholar]
  8. Gray C. H., Tatum E. L. X-Ray Induced Growth Factor Requirements in Bacteria. Proc Natl Acad Sci U S A. 1944 Dec 15;30(12):404–410. doi: 10.1073/pnas.30.12.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grzeschik K. H. Assignment of a structural gene for beta-glucuronidase to human chromosome C7. Somatic Cell Genet. 1976 Sep;2(5):401–410. doi: 10.1007/BF01542721. [DOI] [PubMed] [Google Scholar]
  10. Hsia Y. E. Inherited hyperammonemic syndromes. Gastroenterology. 1974 Aug;67(2):347–374. [PubMed] [Google Scholar]
  11. KIT S., DUBBS D. R., PIEKARSKI L. J., HSU T. C. DELETION OF THYMIDINE KINASE ACTIVITY FROM L CELLS RESISTANT TO BROMODEOXYURIDINE. Exp Cell Res. 1963 Aug;31:297–312. doi: 10.1016/0014-4827(63)90007-7. [DOI] [PubMed] [Google Scholar]
  12. Kaplan J. C., Beutler E. Electrophoretic study of glutathione reductase in human erythrocytes and leucocytes. Nature. 1968 Jan 20;217(5125):256–258. doi: 10.1038/217256a0. [DOI] [PubMed] [Google Scholar]
  13. Klebe R. J., Chen T., Ruddle F. H. Controlled production of proliferating somatic cell hybrids. J Cell Biol. 1970 Apr;45(1):74–82. doi: 10.1083/jcb.45.1.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LITTLEFIELD J. W. SELECTION OF HYBRIDS FROM MATINGS OF FIBROBLASTS IN VITRO AND THEIR PRESUMED RECOMBINANTS. Science. 1964 Aug 14;145(3633):709–710. doi: 10.1126/science.145.3633.709. [DOI] [PubMed] [Google Scholar]
  15. LITTLEFIELD J. W. THREE DEGREES OF GUANYLIC ACID--INOSINIC ACID PYROPHOSPHORYLASE DEFICIENCY IN MOUSE FIBROBLASTS. Nature. 1964 Sep 12;203:1142–1144. doi: 10.1038/2031142a0. [DOI] [PubMed] [Google Scholar]
  16. Lalley P. A., Brown J. A., Eddy R. L., Haley L. L., Byers M. G., Goggin A. P., Shows T. B. Human beta-glucuronidase: assignment of the structural gene to chromosome 7 using somatic cell hybrids. Biochem Genet. 1977 Apr;15(3-4):367–382. doi: 10.1007/BF00484467. [DOI] [PubMed] [Google Scholar]
  17. Lalley P. A., Brown J. A., Eddy R. L., Haley L. L., Shows T. B. Assignment of the gene for beta-glucuronidase (betaGUS) to chromosome 7 in man. Cytogenet Cell Genet. 1976;16(1-5):184–187. doi: 10.1159/000130586. [DOI] [PubMed] [Google Scholar]
  18. Lalley P. A., Rattazzi M. C., Shows T. B. Human beta-D-N-acetylhexosaminidases A and B: expression and linkage relationships in somatic cell hybrids. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1569–1573. doi: 10.1073/pnas.71.4.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lusty C. J., Ratner S. Biosynthesis of urea. XIV. The quaternary structure of argininosuccinase. J Biol Chem. 1972 Nov 10;247(21):7010–7022. [PubMed] [Google Scholar]
  20. MAAS W. K., MAAS R., WIAME J. M., GLANSDORFF N. STUDIES ON THE MECHANISM OF REPRESSION OF ARGININE BIOSYNTHESIS IN ESCHERICHIA COLI. I. DOMINANCE OF REPRESSIBILITY IN ZYGOTES. J Mol Biol. 1964 Mar;8:359–364. doi: 10.1016/s0022-2836(64)80199-6. [DOI] [PubMed] [Google Scholar]
  21. MAAS W. K. STUDIES ON THE MECHANISM OF REPRESSION OF ARGININE BIOSYNTHESIS IN ESCHERICHIA COLI. II. DOMINANCE OF REPRESSIBILITY IN DIPLOIDS. J Mol Biol. 1964 Mar;8:365–370. doi: 10.1016/s0022-2836(64)80200-x. [DOI] [PubMed] [Google Scholar]
  22. Markert C. L., Møller F. MULTIPLE FORMS OF ENZYMES: TISSUE, ONTOGENETIC, AND SPECIES SPECIFIC PATTERNS. Proc Natl Acad Sci U S A. 1959 May;45(5):753–763. doi: 10.1073/pnas.45.5.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mowbray S., Watson B., Harris H. A search for electrophoretic variants of human adenine phosphoribosyl transferase. Ann Hum Genet. 1972 Nov;36(2):153–162. doi: 10.1111/j.1469-1809.1972.tb00766.x. [DOI] [PubMed] [Google Scholar]
  24. Murphey W. H., Patchen L., Guthrie R. Screening tests for argininosuccinic aciduria, orotic aciduria, and other inherited enzyme deficiencies using dried blood specimens. Biochem Genet. 1972 Feb;6(1):51–59. doi: 10.1007/BF00485965. [DOI] [PubMed] [Google Scholar]
  25. Naylor S. L., Klebe R. J. Bioautography: a general method for the visualization of isozymes. Biochem Genet. 1977 Dec;15(11-12):1193–1211. doi: 10.1007/BF00484509. [DOI] [PubMed] [Google Scholar]
  26. Ratner S. Enzymes of arginine and urea synthesis. Adv Enzymol Relat Areas Mol Biol. 1973;39:1–90. doi: 10.1002/9780470122846.ch1. [DOI] [PubMed] [Google Scholar]
  27. Ricciuti F., Ruddle F. H. Assignment of nucleoside phosphorylase to D-14 and localization of X-linked loci in man by somatic cell genetics. Nat New Biol. 1973 Feb 7;241(110):180–182. doi: 10.1038/newbio241180a0. [DOI] [PubMed] [Google Scholar]
  28. SCHIMKE R. T. ENZYMES OF ARGININE METABOLISM IN MAMMALIAN CELL CULTURE. I. REPRESSION OF ARGININOSUCCINATE SYNTHETASE AND ARGININOSUCCINASE. J Biol Chem. 1964 Jan;239:136–145. [PubMed] [Google Scholar]
  29. Shin S., Meera Khan P., Cook P. R. Characterization of hypoxanthine-guanine phosphoribosyl transferase in man--mouse somatic cell hybrids by an improved electrophoretic method. Biochem Genet. 1971 Feb;5(1):91–99. doi: 10.1007/BF00485734. [DOI] [PubMed] [Google Scholar]
  30. Shows T. B., Brown J. A., Eddy R. L., Byers M. G., Haley L. L., Cooper E. S., Goggin A. P. Assignment of peptidase S (PEPS) to chromosome 4 in man using somatic cell hybrids. Hum Genet. 1978 Aug 31;43(2):119–125. doi: 10.1007/BF00293588. [DOI] [PubMed] [Google Scholar]
  31. Shows T. B., Brown J. A., Haley L. L., Byers M. G., Eddy R. L., Cooper E. S., Goggin A. P. Assignment of the beta-glucuronidase structural gene to the pter leads to q22 region of chromosome 7 in man. Cytogenet Cell Genet. 1978;21(1-2):99–104. doi: 10.1159/000130882. [DOI] [PubMed] [Google Scholar]
  32. Shows T. B., Brown J. A. Human X-Linked genes regionally mapped utilizing X-autosome translocations and somatic cell hybrids. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2125–2129. doi: 10.1073/pnas.72.6.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shows T. B. Genetics of human-mouse somatic cell hybrids: linkage of human genes for isocitrate dehydrogenase and malate dehydrogenase. Biochem Genet. 1972 Dec;7(3):193–204. doi: 10.1007/BF00484817. [DOI] [PubMed] [Google Scholar]
  34. Shows T. B. Genetics of human-mouse somatic cell hybrids: linkage of human genes for lactate dehydrogenase-A and esterase-A 4 . Proc Natl Acad Sci U S A. 1972 Feb;69(2):348–352. doi: 10.1073/pnas.69.2.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Solomon E., Bobrow M., Goodfellow P. N., Bodmer W. F., Swallow D. M., Povey S., Noël B. Human gene mapping using an X/autosome translocation. Somatic Cell Genet. 1976 Mar;2(2):125–140. doi: 10.1007/BF01542626. [DOI] [PubMed] [Google Scholar]
  36. WESTALL R. G. Argininosuccinic aciduria: identification and reactions of the abnormal metabolite in a newly described form of mental disease, with some preliminary metabolic studies. Biochem J. 1960 Oct;77:135–144. doi: 10.1042/bj0770135. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES