Abstract
A clonal stem cell line, RT4-AC, of the rat peripheral neurotumor RT4 differentiates in culture into morphologically distinct cell types RT4-B, RT4-D, and RT4-E (cell type conversion). The multipotential stem cell type RT4-AC and cell type RT4-D produce a glial marker, S100 protein, but RT4-B and RT4-E do not. The stem cells also show a small but significant response to veratridine on voltage-dependent Na+ influx. Cell types RT4-B and RT4-E show a clear response of voltage-dependent Na+ influx to veratridine, typical of neuronal cells, whereas cell type RT4-D is completely negative. These results indicate that (i) the stem cell type RT4-AC shows both neuronal and glial properties, (ii) cell types RT4-B and RT4-E have a neuronal property, and (iii) cell type RT4-D has a glial property. Therefore, cell type conversion of stem cell RT4-AC to RT4-B and RT4-E cells seems to result in differentiation towards neuronal cell types, and cell type conversion of RT4-AC to RT4-D results in differentiation towards a glial type in culture.
Full text
PDF![6305](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68d0/393170/5ecde1993eba/pnas00022-0569.png)
![6306](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68d0/393170/04d8dda21ed5/pnas00022-0570.png)
![6307](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68d0/393170/4d68b9ea1c0f/pnas00022-0571.png)
![6308](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68d0/393170/6169b351af30/pnas00022-0572.png)
![6309](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68d0/393170/30b4e1cdb1a0/pnas00022-0573.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baccaglini P. I., Spitzer N. C. Developmental changes in the inward current of the action potential of Rohon-Beard neurones. J Physiol. 1977 Sep;271(1):93–117. doi: 10.1113/jphysiol.1977.sp011992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benda P., Lightbody J., Sato G., Levine L., Sweet W. Differentiated rat glial cell strain in tissue culture. Science. 1968 Jul 26;161(3839):370–371. doi: 10.1126/science.161.3839.370. [DOI] [PubMed] [Google Scholar]
- Catterall W. A., Nirenberg M. Sodium uptake associated with activation of action potential ionophores of cultured neuroblastoma and muscle cells. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3759–3763. doi: 10.1073/pnas.70.12.3759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Easton T. G., Valinsky J. E., Reich E. Merocyanine 540 as a fluorescent probe of membranes: staining of electrically excitable cells. Cell. 1978 Mar;13(3):475–486. doi: 10.1016/0092-8674(78)90321-5. [DOI] [PubMed] [Google Scholar]
- Haglid K., Hamberger A., Hansson H. A., Hyden H., Persson L., Ronnback L. S-100 protein in synapses of the central nervous system. Nature. 1974 Oct 11;251(5475):532–534. doi: 10.1038/251532b0. [DOI] [PubMed] [Google Scholar]
- Harris J. B., Marshall M. W. Tetrodotoxin-resistant action potentials in newborn rat muscle. Nat New Biol. 1973 Jun 6;243(127):191–192. doi: 10.1038/newbio243191a0. [DOI] [PubMed] [Google Scholar]
- Hille B. Pharmacological modifications of the sodium channels of frog nerve. J Gen Physiol. 1968 Feb;51(2):199–219. doi: 10.1085/jgp.51.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hydén H., McEwen B. A glial protein specific for the nervous system. Proc Natl Acad Sci U S A. 1966 Feb;55(2):354–358. doi: 10.1073/pnas.55.2.354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imada M., Sueoka N. Clonal sublines of rat neurotumor RT4 and cell differentiation. I. Isolation and characterization of cell lines and cell type conversion. Dev Biol. 1978 Sep;66(1):97–108. doi: 10.1016/0012-1606(78)90276-2. [DOI] [PubMed] [Google Scholar]
- Imada M., Sueoka N., Rifkin D. B. Clonal sublines of rat neurotumor RT4 and cell differentiation. II. A conversion coupling of tumorigenicity and a glial property. Dev Biol. 1978 Sep;66(1):109–116. doi: 10.1016/0012-1606(78)90277-4. [DOI] [PubMed] [Google Scholar]
- Kano-Sueoka T., Hsieh P. A rat mammary carcinoma in vivo and in vitro: establishment of clonal lines of the tumor. Proc Natl Acad Sci U S A. 1973 Jul;70(7):1922–1926. doi: 10.1073/pnas.70.7.1922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kidokoro Y. Development of action potentials in a clonal rat skeletal muscle cell line. Nat New Biol. 1973 Jan 31;241(109):158–159. doi: 10.1038/newbio241158a0. [DOI] [PubMed] [Google Scholar]
- Ludwin S. K., Kosek J. C., Eng L. F. The topographical distribution of S-100 and GFA proteins in the adult rat brain: an immunohistochemical study using horseradish peroxidase-labelled antibodies. J Comp Neurol. 1976 Jan 15;165(2):197–207. doi: 10.1002/cne.901650206. [DOI] [PubMed] [Google Scholar]
- McLean M. J., Renaud J., Sperelakis N., Niu M. C. Messenger RNA induction of fast sodium ion channels in cultured cardiac myoblasts. Science. 1976 Jan 23;191(4224):297–299. doi: 10.1126/science.1246615. [DOI] [PubMed] [Google Scholar]
- Moore B. W. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun. 1965 Jun 9;19(6):739–744. doi: 10.1016/0006-291x(65)90320-7. [DOI] [PubMed] [Google Scholar]
- NARAHASHI T., MOORE J. W., SCOTT W. R. TETRODOTOXIN BLOCKAGE OF SODIUM CONDUCTANCE INCREASE IN LOBSTER GIANT AXONS. J Gen Physiol. 1964 May;47:965–974. doi: 10.1085/jgp.47.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PLESCIA O. J., BRAUN W., PALCZUK N. C. PRODUCTION OF ANTIBODIES TO DENATURED DEOXYRIBONUCLEIC ACID (DNA). Proc Natl Acad Sci U S A. 1964 Aug;52:279–285. doi: 10.1073/pnas.52.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfeiffer S. E., Wechsler W. Biochemically differentiated neoplastic clone of Schwann cells. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2885–2889. doi: 10.1073/pnas.69.10.2885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sastre A., Podleski T. R. Pharmacologic characterization of the Na+ ionophores in L6 myotubes. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1355–1359. doi: 10.1073/pnas.73.4.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schacterle G. R., Pollack R. L. A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal Biochem. 1973 Feb;51(2):654–655. doi: 10.1016/0003-2697(73)90523-x. [DOI] [PubMed] [Google Scholar]
- Schubert D., Heinemann S., Carlisle W., Tarikas H., Kimes B., Patrick J., Steinbach J. H., Culp W., Brandt B. L. Clonal cell lines from the rat central nervous system. Nature. 1974 May 17;249(454):224–227. doi: 10.1038/249224a0. [DOI] [PubMed] [Google Scholar]
- Sperelakis N., Lehmkuhl D. Insensitivity of cultured chick heart cells to autonomic agents and tetrodotoxin. Am J Physiol. 1965 Oct;209(4):693–698. doi: 10.1152/ajplegacy.1965.209.4.693. [DOI] [PubMed] [Google Scholar]
- Sperelakis N., Shigenobu K. Changes in membrane properties of chick embryonic hearts during development. J Gen Physiol. 1972 Oct;60(4):430–453. doi: 10.1085/jgp.60.4.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stallcup W. B., Cohn M. Correlation of surface antigens and cell type in cloned cell lines from the rat central nervous system. Exp Cell Res. 1976 Mar 15;98(2):285–297. doi: 10.1016/0014-4827(76)90440-7. [DOI] [PubMed] [Google Scholar]
- Stallcup W. B., Cohn M. Electrical properties of a clonal cell line as determined by measurement of ion fluxes. Exp Cell Res. 1976 Mar 15;98(2):277–284. doi: 10.1016/0014-4827(76)90439-0. [DOI] [PubMed] [Google Scholar]