Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Dec;75(12):6314–6318. doi: 10.1073/pnas.75.12.6314

Ionic factors in release of 45Ca2+ from chicken cerebral tissue by electromagnetic fields.

S M Bawin, W R Adey, I M Sabbot
PMCID: PMC393172  PMID: 282648

Abstract

Electrical stimulation with radiofrequency fields amplitude-modulated at brain wave frequencies increased 45Ca2+ efflux from isolated chicken cerebral tissue. The response was not sensitive to variations of the calcium concentration (0-4.16 mM) in the bathing solution but was enhanced by addition of H+ (0.108 mM HCl) and inhibited in the absence of normal bicarbonate levels (2.4 mM). Addition of lanthanum to the bicarbonate-free solution restored electrical responsiveness, but the stimulus decreased instead of increasing 45Ca2+ efflux. It is suggested that low-frequency, weak, extracellular electric gradients may be transduced in a specific class of extracellular negative binding sites normally occupied by Ca2+ and susceptible to competitive H+ binding.

Full text

PDF
6314

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adey W. R. Models of membranes of cerebral cells as substrates for information storage. Biosystems. 1977 Apr;8(4):163–178. doi: 10.1016/0303-2647(77)90035-1. [DOI] [PubMed] [Google Scholar]
  2. Baker P. F., McNaughton P. A. Proceedings: Calcium-dependent calcium efflux from intact squid axons: Ca-Ca exchange or net extrusion? J Physiol. 1976 Jun;258(2):97P–98P. [PubMed] [Google Scholar]
  3. Baker P. F. Regulation of intracellular Ca and Mg in squid axons. Fed Proc. 1976 Dec;35(14):2589–2595. [PubMed] [Google Scholar]
  4. Bawin S. M., Adey W. R. Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1999–2003. doi: 10.1073/pnas.73.6.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bawin S. M., Gavalas-Medici R. J., Adey W. R. Effects of modulated very high frequency fields on specific brain rhythms in cats. Brain Res. 1973 Aug 30;58(2):365–384. doi: 10.1016/0006-8993(73)90008-5. [DOI] [PubMed] [Google Scholar]
  6. Bawin S. M., Kaczmarek L. K., Adey W. R. Effects of modulated VHF fields on the central nervous system. Ann N Y Acad Sci. 1975 Feb 28;247:74–81. doi: 10.1111/j.1749-6632.1975.tb35984.x. [DOI] [PubMed] [Google Scholar]
  7. Bull R. J., Trevor A. J. Saxitoxin, tetrodotoxin and the metabolism and cation fluxes in isolated cerebral tissues. J Neurochem. 1972 Apr;19(4):999–1009. doi: 10.1111/j.1471-4159.1972.tb01420.x. [DOI] [PubMed] [Google Scholar]
  8. Bull R. J., Trevor A. J. Sodium and the flux of calcium ions in electrically-stimulated cerebral tissue. J Neurochem. 1972 Apr;19(4):1011–1022. doi: 10.1111/j.1471-4159.1972.tb01421.x. [DOI] [PubMed] [Google Scholar]
  9. Carafoli E. Mitochondrial uptake of calcium ions and the regulation of cell function. Biochem Soc Symp. 1974;(39):89–109. [PubMed] [Google Scholar]
  10. Cooke W. J., Robinson J. D. Factors influencing calcium movements in rat brain slices. Am J Physiol. 1971 Jul;221(1):218–225. doi: 10.1152/ajplegacy.1971.221.1.218. [DOI] [PubMed] [Google Scholar]
  11. Henkart M., Hagiwara S. Localization of calcium binding sites associated with the calcium spike in barnacle muscle. J Membr Biol. 1976 Jun 9;27(1-2):1–20. doi: 10.1007/BF01869126. [DOI] [PubMed] [Google Scholar]
  12. Kaczmarek L. K., Adey W. R. The efflux of 45CA2+ and (3H)gamma-aminobutyric acid from cate cerebral cortex. Brain Res. 1973 Dec 7;63:331–342. doi: 10.1016/0006-8993(73)90100-5. [DOI] [PubMed] [Google Scholar]
  13. Kimelberg H. K., Bourke R. S. Properties and localization of bicarbonate-stimulated ATPase activity in rat brain. J Neurochem. 1973 Feb;20(2):347–359. doi: 10.1111/j.1471-4159.1973.tb12134.x. [DOI] [PubMed] [Google Scholar]
  14. LOLLEY R. N. THE CALCIUM CONTENT OF ISOLATED CEREBRAL TISSUES AND THEIR STEADY-STATE EXCHANGE OF CALCIUM. J Neurochem. 1963 Sep;10:665–676. doi: 10.1111/j.1471-4159.1963.tb08938.x. [DOI] [PubMed] [Google Scholar]
  15. Langer G. A., Frank J. S. Lanthanum in heart cell culture. Effect on calcium exchange correlated with its localization. J Cell Biol. 1972 Sep;54(3):441–455. doi: 10.1083/jcb.54.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miledi R. Lanthanum ions abolish the "calcium response" of nerve terminals. Nature. 1971 Feb 5;229(5284):410–411. doi: 10.1038/229410a0. [DOI] [PubMed] [Google Scholar]
  17. Mullins L. J. Steady-state calcium fluxes: membrane versus mitochondrial control of ionized calcium in axoplasm. Fed Proc. 1976 Dec;35(14):2583–2588. [PubMed] [Google Scholar]
  18. Nicholson C., Bruggencate G. T., Steinberg R., Stöckle H. Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1287–1290. doi: 10.1073/pnas.74.3.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schatzki P. F. The passage of radioactive lanthanum from the biliary to the vascular system. An electron microscopic and radioactive tracer study. Z Zellforsch Mikrosk Anat. 1971;119(4):451–459. doi: 10.1007/BF00455242. [DOI] [PubMed] [Google Scholar]
  20. Stahl W. L., Swanson P. D. Calcium movements in brain slices in low sodium or calcium media. J Neurochem. 1972 Oct;19(10):2395–2407. doi: 10.1111/j.1471-4159.1972.tb01294.x. [DOI] [PubMed] [Google Scholar]
  21. Van Breemen C., Farinas B. R., Gerba P., McNaughton E. D. Excitation-contraction coupling in rabbit aorta studied by the lanthanum method for measuring cellular calcium influx. Circ Res. 1972 Jan;30(1):44–54. doi: 10.1161/01.res.30.1.44. [DOI] [PubMed] [Google Scholar]
  22. Yahara I., Edelman G. M. Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A. Proc Natl Acad Sci U S A. 1972 Mar;69(3):608–612. doi: 10.1073/pnas.69.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. van Breemen C., De Weer P. Lanthanum inhibition of 45Ca efflux from the squid giant axon. Nature. 1970 May 23;226(5247):760–761. doi: 10.1038/226760a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES