Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Jan;74(1):96–100. doi: 10.1073/pnas.74.1.96

Enzymatic synthesis of oligonucleotides of defined sequence: synthesis of a segment of yeast iso-1-cytochrome c gene.

S Gillam, F Rottman, P Jahnke, M Smith
PMCID: PMC393204  PMID: 189317

Abstract

The deoxyribooligonucleotide, d(pT-T-A-G-C-A-G-A-A-C-C-G-G), constituting a segment of yeast iso-1-cytochrome c gene, has been synthesized by a combination of chemical and primarily enzymatic methods. The starting primer, d(pT-T-A-G1, was chemically synthesized by the phosphodiester method and was extended stepwise, by reactions catalyzed by polynucleotide phosphorylase.

Full text

PDF
96

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brownlee G. G., Sanger F. Chromatography of 32P-labelled oligonucleotides on thin layers of DEAE-cellulose. Eur J Biochem. 1969 Dec;11(2):395–399. doi: 10.1111/j.1432-1033.1969.tb00786.x. [DOI] [PubMed] [Google Scholar]
  2. Egan B. Z. Separation of oligonucleotides by reversed-phase chromatography. Biochim Biophys Acta. 1973 Mar 19;299(2):245–252. doi: 10.1016/0005-2787(73)90347-x. [DOI] [PubMed] [Google Scholar]
  3. Gilham S., Smith M. Enzymatic synthesis of deoxyribo-oligonucleotides of defined sequence. Nat New Biol. 1972 Aug 23;238(86):233–234. doi: 10.1038/newbio238233a0. [DOI] [PubMed] [Google Scholar]
  4. Gillam S., Smith M. Enzymatic synthesis of deoxyribo-oligonucleotides of defined sequence. Properties of the enzyme. Nucleic Acids Res. 1974 Dec;1(12):1631–1647. doi: 10.1093/nar/1.12.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gillam S., Waterman K., Doel M., Smith M. Enzymatic synthesis of deoxyribo-oligonucleotides of defined sequence. Deoxyribo-oligonucleotide synthesis. Nucleic Acids Res. 1974 Dec;1(12):1649–1664. doi: 10.1093/nar/1.12.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gillam S., Waterman K., Smith M. Enzymatic synthesis of oligonucleotides of defined sequence. Addition of short blocks of nucleotide residues to oligonucleotide primers. Nucleic Acids Res. 1975 May;2(5):613–624. doi: 10.1093/nar/2.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hsieh W. T. Polymerization of deoxyribonucleoside diphosphates with an enzyme from an Escherichia coli mutant lacking deoxyribonucleic acid polymerase activity. J Biol Chem. 1971 Mar 25;246(6):1780–1784. [PubMed] [Google Scholar]
  8. Khorana H. G., Agarwal K. L., Büchi H., Caruthers M. H., Gupta N. K., Kleppe K., Kumar A., Otsuka E., RajBhandary U. L., Van de Sande J. H. Studies on polynucleotides. 103. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. J Mol Biol. 1972 Dec 28;72(2):209–217. doi: 10.1016/0022-2836(72)90146-5. [DOI] [PubMed] [Google Scholar]
  9. Singhal R. P. Anion-exchange chromatography on reversed-phase columns: isolation and assay of nucleosides, nucleotides, and oligonucleotides from nucleic acids and from cytoplasm. Biochim Biophys Acta. 1973 Aug 10;319(1):11–24. doi: 10.1016/0005-2787(73)90036-1. [DOI] [PubMed] [Google Scholar]
  10. Snopek T. J., Sugino A., Agarwal K. L., Cozzarelli N. R. Catalysis of DNA joining by bacteriophage T4 RNA ligase. Biochem Biophys Res Commun. 1976 Jan 26;68(2):417–424. doi: 10.1016/0006-291x(76)91161-x. [DOI] [PubMed] [Google Scholar]
  11. TOMLINSON R. V., TENER G. M. THE EFFECT OF UREA, FORMAMIDE, AND GLYCOLS ON THE SECONDARY BINDING FORCES IN THE ION-EXCHANGE CHROMATOGRAPHY OF POLYNUCLEOTIDES OF DEAE-CELLULOSE. Biochemistry. 1963 Jul-Aug;2:697–702. doi: 10.1021/bi00904a013. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES