Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Jan;74(1):115–119. doi: 10.1073/pnas.74.1.115

Synthesis of a 19-residue peptide with alamethicin-like activity.

B F Gisin, S Kobayashi, J E Hall
PMCID: PMC393208  PMID: 264663

Abstract

This paper describes the chemical synthesis of a compound with voltage-gating characteristics similar to those observed in nerve membranes. For alamethicin (ALA), a natural antibiotic that induces such properties in lipid bilayer membranes, there are two proposed structures, one a cyclic and the other an open chain peptide. The open chain sequence (ALA-o) proposed by Martin and Williams [(1976) Biochem. J. 153, 181-190] was synthesized by stepwise solid-phase condensation of four fragments prepared by solid-phase synthesis. The product, purified to homogeneity, was not identical with the main component of natural ALA. Nevertheless, in lipid bilayer membranes the exponential dependence of conductance on voltage and the dependence of conductance on a high power of the peptide concentration were qualitatively similar for ALA-o and for natural ALA. Like ALA, ALA-o showed the characteristics of a channel-former, although the single-channel conductances were less well defined for the synthetic compound. This work establishes that a cyclic structure is not a necessary condition for a peptide to induce voltage-dependent conductances in membranes and that ALA-o possesses all the structural elements required for such an activity.

Full text

PDF
115

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumann G., Mueller P. A molecular model of membrane excitability. J Supramol Struct. 1974;2(5-6):538–557. doi: 10.1002/jss.400020504. [DOI] [PubMed] [Google Scholar]
  2. Boheim G., Hall J. E. Oscillation phenomena in black lipid membranes induced by a single alamethicin pore. Biochim Biophys Acta. 1975 May 21;389(3):436–443. doi: 10.1016/0005-2736(75)90154-6. [DOI] [PubMed] [Google Scholar]
  3. Boheim G. Statistical analysis of alamethicin channels in black lipid membranes. J Membr Biol. 1974;19(3):277–303. doi: 10.1007/BF01869983. [DOI] [PubMed] [Google Scholar]
  4. Eisenberg M., Hall J. E., Mead C. A. The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes. J Membr Biol. 1973 Dec 31;14(2):143–176. doi: 10.1007/BF01868075. [DOI] [PubMed] [Google Scholar]
  5. Gisin B. F., Merrifield R. B. Synthesis of a hydrophobic potassium binding peptide. J Am Chem Soc. 1972 Aug 23;94(17):6165–6170. doi: 10.1021/ja00772a039. [DOI] [PubMed] [Google Scholar]
  6. Gisin B. F. The monitoring of reactions in solid-phase peptide synthesis with picric acid. Anal Chim Acta. 1972 Jan;58(1):248–249. doi: 10.1016/S0003-2670(00)86882-8. [DOI] [PubMed] [Google Scholar]
  7. Gordon L. G., Haydon D. A. Potential-dependent conductances in lipid membranes containing alamethicin. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):433–447. doi: 10.1098/rstb.1975.0021. [DOI] [PubMed] [Google Scholar]
  8. Hall J. E. Toward a molecular understanding of excitability. Alamethicin in black lipid films. Biophys J. 1975 Sep;15(9):934–939. doi: 10.1016/S0006-3495(75)85869-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hauser H., Finer E. G., Chapman D. Nuclear magnetic resonance studies of the polypeptide alamethicin and its interaction with phospholipids. J Mol Biol. 1970 Nov 14;53(3):419–433. doi: 10.1016/0022-2836(70)90075-6. [DOI] [PubMed] [Google Scholar]
  10. Jung G., Dubischar N. Conformational changes of alamethicin induced by solvent and temperature. A 13C-NMR and circular-dichroism study. Eur J Biochem. 1975 Jun;54(2):395–409. doi: 10.1111/j.1432-1033.1975.tb04150.x. [DOI] [PubMed] [Google Scholar]
  11. Jung G., König W. A., Leibfritz D., Ooka T., Janko K., Boheim G. Structural and membrane modifying properties of suzukacillin, a peptide antibiotic related to alamethicin. Part A. Sequence and conformation. Biochim Biophys Acta. 1976 Apr 16;433(1):164–181. doi: 10.1016/0005-2736(76)90185-1. [DOI] [PubMed] [Google Scholar]
  12. König W., Geiger R. Eine neue Methode zur Synthese von Peptiden: Aktivierung der Carboxylgruppe mit Dicyclohexycarbodiimid unter Zusatz von 1-Hydroxy-benzotriazolen. Chem Ber. 1970;103(3):788–798. doi: 10.1002/cber.19701030319. [DOI] [PubMed] [Google Scholar]
  13. Lau A. L., Chan S. I. Nuclear magnetic resonance studies of the interaction of alamethicin with lecithin bilayers. Biochemistry. 1974 Nov 19;13(24):4942–4948. doi: 10.1021/bi00721a010. [DOI] [PubMed] [Google Scholar]
  14. Martin D. R., Williams R. J. Chemical nature and sequence of alamethicin. Biochem J. 1976 Feb 1;153(2):181–190. doi: 10.1042/bj1530181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Martin D. R., Williams R. J. The nature and function of alamethicin. Biochem Soc Trans. 1975;3(1):166–167. doi: 10.1042/bst0030166. [DOI] [PubMed] [Google Scholar]
  16. McMullen A. I., Marlborough D. I., Bayley P. M. The conformation of alamethicin. FEBS Lett. 1971 Sep 1;16(4):278–280. doi: 10.1016/0014-5793(71)80369-1. [DOI] [PubMed] [Google Scholar]
  17. McMullen A. I., Stirrup J. A. The aggregation of alamethicin. Biochim Biophys Acta. 1971 Sep 14;241(3):807–814. doi: 10.1016/0005-2736(71)90008-3. [DOI] [PubMed] [Google Scholar]
  18. Meyer C. E., Reusser F. A polypeptide antibacterial agent isolated from Trichoderma viride. Experientia. 1967 Feb 15;23(2):85–86. doi: 10.1007/BF02135929. [DOI] [PubMed] [Google Scholar]
  19. Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mueller P., Rudin D. O. Action potentials induced in biomolecular lipid membranes. Nature. 1968 Feb 24;217(5130):713–719. doi: 10.1038/217713a0. [DOI] [PubMed] [Google Scholar]
  21. Payne J. W., Jakes R., Hartley B. S. The primary structure of alamethicin. Biochem J. 1970 May;117(4):757–766. doi: 10.1042/bj1170757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reusser F. Biosynthesis of antibiotic U-22,324, a cyclic polypeptide. J Biol Chem. 1967 Jan 25;242(2):243–247. [PubMed] [Google Scholar]
  23. Sakakibara S., Shimonishi Y. A new method for releasing oxytocin from fully-protected nona-peptides using anhydrous hydrogen fluoride. Bull Chem Soc Jpn. 1965 Aug;38(8):1412–1413. doi: 10.1246/bcsj.38.1412. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES