Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Jan;74(1):334–338. doi: 10.1073/pnas.74.1.334

In vitro evidence of cell-mediated immunity after exposure of mice to both live and inactivated rabies virus.

T J Wiktor, P C Doherty, H Koprowski
PMCID: PMC393254  PMID: 299948

Abstract

Mice exposed to live or beta-propiolactone-inactivated rabies virus generated a strong, specific cell-mediated cytotoxic response which was generally maximal 6 days after inoculation. Release of 51Cr was apparently a function of immune thymus-derived lymphocytes (T cells) because it was abrogated by prior incubation of spleen cells with anti-thymus antiserum and complement but was undiminished by passage of spleen cells through nylon-wool columns. Cytotoxicity was always maximal for interactions in which thymus-derived cells and targets shared H-2 genes but, unlike the situation found in other assays of this type, considerable lysis of allogeneic, virus-infected target cells may also occur. Perhaps the most significant finding from these experiments is that an inactivated virus has been shown to stimulate a potent cytotoxic thymus-derived cell response. Manipulation of this experimental model may allow analysis of the antigens required for stimulation of cell-mediated immunity. A more practical consequence may be the development of more rational protocols for postexposure vaccination against rabies. Prior treatment of mice with antirabies antibody severely depressed the generation of cell-mediated immunity.

Full text

PDF
334

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. A., Daly F. T., Jr, Kidd J. C. Human rabies after antiserum and vaccine postexposure treatment. Case report and review. Ann Intern Med. 1966 Jun;64(6):1297–1302. doi: 10.7326/0003-4819-64-6-1297. [DOI] [PubMed] [Google Scholar]
  2. Blanden R. V., Doherty P. C., Dunlop M. B., Gardner I. D., Zinkernagel R. M., David C. S. Genes required for cytotoxicity against virus-infected target cells in K and D regions of H-2 complex. Nature. 1975 Mar 20;254(5497):269–270. doi: 10.1038/254269a0. [DOI] [PubMed] [Google Scholar]
  3. Boyle W. An extension of the 51Cr-release assay for the estimation of mouse cytotoxins. Transplantation. 1968 Sep;6(6):761–764. doi: 10.1097/00007890-196809000-00002. [DOI] [PubMed] [Google Scholar]
  4. Doherty P. C., Blanden R. V., Zinkernagel R. M. Specificity of virus-immune effector T cells for H-2K or H-2D compatible interactions: implications for H-antigen diversity. Transplant Rev. 1976;29:89–124. doi: 10.1111/j.1600-065x.1976.tb00198.x. [DOI] [PubMed] [Google Scholar]
  5. Doherty P. C., Zinkernagel R. M., Ramshaw I. A. Specificity and development of cytotoxic thymus-derived lymphocytes in lymphocytic choriomeningitis. J Immunol. 1974 Apr;112(4):1548–1552. [PubMed] [Google Scholar]
  6. Doherty P. C., Zinkernagel R. M. Specific immune lysis of paramyxovirus-infected cells by H-2-compatible thymus-derived lymphocytes. Immunology. 1976 Jul;31(1):27–32. [PMC free article] [PubMed] [Google Scholar]
  7. Doherty P. C., Zinkernagel R. M. T-cell-mediated immunopathology in viral infections. Transplant Rev. 1974;19(0):89–120. doi: 10.1111/j.1600-065x.1974.tb00129.x. [DOI] [PubMed] [Google Scholar]
  8. Hattwick M. A., Hochberg F. H., Landrigan P. J., Gregg M. B. Skunk-associated human rabies. JAMA. 1972 Oct 2;222(1):44–47. [PubMed] [Google Scholar]
  9. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  10. Kaplan M. M., Wiktor T. J., Koprowski H. Pathogenesis of rabies in immunodeficient mice. J Immunol. 1975 Jun;114(6):1761–1765. [PubMed] [Google Scholar]
  11. MacLennan I. C. Antibody in the induction and inhibition of lymphocyte cytotoxicity. Transplant Rev. 1972;13:67–90. doi: 10.1111/j.1600-065x.1972.tb00060.x. [DOI] [PubMed] [Google Scholar]
  12. Miller C. A., Levine E. M. Effects of aluminum salts on cultured neuroblastoma cells. J Neurochem. 1974 May;22(5):751–758. doi: 10.1111/j.1471-4159.1974.tb04290.x. [DOI] [PubMed] [Google Scholar]
  13. Perlmann P., Perlmann H., Wigzell H. Lymphocyte mediated cytotoxicity in vitro. Induction and inhibition by humoral antibody and nature of effector cells. Transplant Rev. 1972;13:91–114. doi: 10.1111/j.1600-065x.1972.tb00061.x. [DOI] [PubMed] [Google Scholar]
  14. Plotkin S. A., Wiktor T. J., Koprowski H., Rosanoff E. I., Tint H. Immunization schedules for the new human diploid cell vaccine against rabies. Am J Epidemiol. 1976 Jan;103(1):75–80. doi: 10.1093/oxfordjournals.aje.a112207. [DOI] [PubMed] [Google Scholar]
  15. Schlumberger H. D., Wiktor T. J., Koprowski H. Antigenic and immunogenic properties of components contained in rabies virus-infected tissue culture fluids. J Immunol. 1970 Aug;105(2):291–298. [PubMed] [Google Scholar]
  16. Turner G. S. Humoral and cellular immune responses of mice to rabies and smallpox vaccines. Nat New Biol. 1973 Jan 17;241(107):90–92. doi: 10.1038/newbio241090a0. [DOI] [PubMed] [Google Scholar]
  17. Wiktor T. J., Kamo I., Koprowski H. In vitro stimulation of rabbit lymphocytes after immunization with live and inactivated rabies vaccines. J Immunol. 1974 Jun;112(6):2013–2019. [PubMed] [Google Scholar]
  18. Wiktor T. J., Kuwert E., Koprowski H. Immune lysis of rabies virus-infected cells. J Immunol. 1968 Dec;101(6):1271–1282. [PubMed] [Google Scholar]
  19. Wiktor T. J., Lerner R. A., Koprowski H. Inhibitory effect of passive antibody on active immunity induced against rabies by vaccination. Bull World Health Organ. 1971;45(6):747–753. [PMC free article] [PubMed] [Google Scholar]
  20. Wiktor T. J., Plotkin S. A., Grella D. W. Human cell culture rabies vaccine. Antibody response in man. JAMA. 1973 May 21;224(8):1170–1171. [PubMed] [Google Scholar]
  21. Wiktor T. J., Sokol F., Kuwert E., Koprowski H. Immunogenicity of concentrated and purified rabies vaccine of tissue culture origin. Proc Soc Exp Biol Med. 1969 Jul;131(3):799–805. doi: 10.3181/00379727-131-33981. [DOI] [PubMed] [Google Scholar]
  22. Zinkernagel R. M., Doherty P. C. Characteristics of the interaction in vitro between cytotoxic thymus-derived lymphocytes and target monolayers infected with lymphocytic choriomeningitis virus. Scand J Immunol. 1974;3(3):287–294. doi: 10.1111/j.1365-3083.1974.tb01259.x. [DOI] [PubMed] [Google Scholar]
  23. Zinkernagel R. M., Doherty P. C. H-2 compatability requirement for T-cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. Different cytotoxic T-cell specificities are associated with structures coded for in H-2K or H-2D;. J Exp Med. 1975 Jun 1;141(6):1427–1436. doi: 10.1084/jem.141.6.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zinkernagel R. M., Doherty P. C. Peritoneal macrophages as target cells for measuring virus-specific T cell mediated cytotoxicity in vitro. J Immunol Methods. 1975 Sep;8(3):263–266. doi: 10.1016/0022-1759(75)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES