Abstract
Concentrations of DL-glyceraldehyde between 5 and 20 mM reduce the sickling of S/S erythrocytes even in the complete absence of oxygen; at 10 mM glyceraldehyde the increase in the number of normal cells ranges from 20 to 40%. The inhibition of sickling was both concentration- and time-dependent and was not reversed by repeated washings with buffer. Incubation of erythrocytes with increasing concentrations of glyceraldehyde resulted in only a small increase in the oxygen affinity, a moderate reduction in the Hill coefficient, a substantial increase in the minimum gelling concentration, and modification of up to two lysine residues per hemoglobin molecule.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apple M. A., Ludwig F. C., Greenberg D. M. Selective cancer growth inhibition in mice by dihydroxypropanal without concomitant inhibition of bone marrow or other normal tissue. Oncology. 1970;24(3):210–222. doi: 10.1159/000224521. [DOI] [PubMed] [Google Scholar]
- Benesch R., Benesch R. E., Yung S. Chemical modifications that inhibit gelation of sickle hemoglobin. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1504–1505. doi: 10.1073/pnas.71.4.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beutler E., Guinto E. The reduction of glyceraldehyde by human erythrocytes. L-hexonate dehydrogenase activity. J Clin Invest. 1974 May;53(5):1258–1264. doi: 10.1172/JCI107672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonaventura J., Riggs A. Hemoglobin Kansas, a human hemoglobin with a neutral amino acid substitution and an abnormal oxygen equilibrium. J Biol Chem. 1968 Mar 10;243(5):980–991. [PubMed] [Google Scholar]
- Bookchin R. M., Nagel R. L. Ligand-induced conformational dependence of hemoglobin in sickling interactios. J Mol Biol. 1971 Sep 14;60(2):263–270. doi: 10.1016/0022-2836(71)90292-0. [DOI] [PubMed] [Google Scholar]
- Bunn H. F., Haney D. N., Gabbay K. H., Gallop P. M. Further identification of the nature and linkage of the carbohydrate in hemoglobin A1c. Biochem Biophys Res Commun. 1975 Nov 3;67(1):103–109. doi: 10.1016/0006-291x(75)90289-2. [DOI] [PubMed] [Google Scholar]
- Cabantchik I. Z., Balshin M., Breuer W., Rothstein A. Pyridoxal phosphate. An anionic probe for protein amino groups exposed on the outer and inner surfaces of intact human red blood cells. J Biol Chem. 1975 Jul 10;250(13):5130–5136. [PubMed] [Google Scholar]
- Cerami A., Manning J. M. Potassium cyanate as an inhibitor of the sickling of erythrocytes in vitro. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1180–1183. doi: 10.1073/pnas.68.6.1180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dixon H. B. A reaction of glucose with peptides. Biochem J. 1972 Aug;129(1):203–208. doi: 10.1042/bj1290203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eng C. P., Bhatnagar M. K., Morgan J. F. Inhibition of mouse ascites tumors by carbohydrate combined with immunization. Can J Physiol Pharmacol. 1972 Feb;50(2):156–163. doi: 10.1139/y72-022. [DOI] [PubMed] [Google Scholar]
- Freedman M. L., Weissmann G., Gorman B. D., Cunningham-Rundles W. Sickle hemoglobin gelation--inhibition by tris (hydroxymethyl) aminomethane and sugars. Biochem Pharmacol. 1973 Mar 15;22(6):667–674. doi: 10.1016/0006-2952(73)90399-7. [DOI] [PubMed] [Google Scholar]
- GUIDOTTI G. G., FONNESU A., CIARANFI E. INHIBITION OF AMINO ACID INCORPORATION INTO PROTEIN OF YOSHIDA ASCITES HEPATOMA CELLS BY GLYCERALDEHYDE. Cancer Res. 1964 Jun;24:900–905. [PubMed] [Google Scholar]
- HODGE J. E. The Amadori rearrangement. Adv Carbohydr Chem. 1955;10:169–205. doi: 10.1016/s0096-5332(08)60392-6. [DOI] [PubMed] [Google Scholar]
- HORECKER B. L., PONTREMOLI S., RICCI C., CHENG T. On the nature of the transaldolase-dihydroxyacetone complex. Proc Natl Acad Sci U S A. 1961 Dec 15;47:1949–1955. doi: 10.1073/pnas.47.12.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmquist W. R., Schroeder W. A. A new N-terminal blocking group involving a Schiff base in hemoglobin AIc. Biochemistry. 1966 Aug;5(8):2489–2503. doi: 10.1021/bi00872a002. [DOI] [PubMed] [Google Scholar]
- Kobashi K., Lai C. Y., Horecker B. L. Organic phosphate groups in native and borohydride-reduced aldolase. Arch Biochem Biophys. 1966 Nov;117(2):437–444. doi: 10.1016/0003-9861(66)90433-4. [DOI] [PubMed] [Google Scholar]
- Koenig R. J., Cerami A. Synthesis of hemoglobin AIc in normal and diabetic mice: potential model of basement membrane thickening. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3687–3691. doi: 10.1073/pnas.72.9.3687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LARDY H. A., WIEBELHAUS V. D., MANN K. M. The mechanism by which glyceraldehyde inhibits glycolysis. J Biol Chem. 1950 Nov;187(1):325–337. [PubMed] [Google Scholar]
- Lee C. K., Manning J. M. Kinetics of the carbamylation of the amino groups of sickle cell hemoglobin by cyanate. J Biol Chem. 1973 Aug 25;248(16):5861–5865. [PubMed] [Google Scholar]
- Nigen A. M., Njikam N., Lee C. K., Manning J. M. Studies on the mechanism of action of cyanate in sickle cell disease. Oxygen affinity and gelling properties of hemoglobin S carbamylated on specific chains. J Biol Chem. 1974 Oct 25;249(20):6611–6616. [PubMed] [Google Scholar]
- Paniker N. V., Ben-Bassat I., Beutler E. Evaluation of sickle hemoglobin and desickling agents by falling ball viscometry. J Lab Clin Med. 1972 Aug;80(2):282–290. [PubMed] [Google Scholar]

