Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2008 Oct 9;10(4):960–990. doi: 10.1111/j.1582-4934.2006.tb00539.x

Caveolae in smooth muscles: nanocontacts

LM Popescu a,b,*, Mihaela Gherghiceanu a, E Mandache a, D Cretoiu a,b
PMCID: PMC3933089  PMID: 17125599

Abstract

Smooth muscle cell (SMC) caveolae have been investigated by quantitative and qualitative analysis of transmission electron microscopy (TEM) images of rat stomach, bladder and myometrium, guinea pig taenia coli, human ileum, and rat aortic SMCs. Ultrathin (below 30 nm) serial sections were used for examination of caveolar morphology and their connections with SMC organelles. Average caveolar diameter was smaller in vascular SMCs (70 nm, n=50) than in visceral SMCs (77 nm, n=100), but with the same morphology. Most of the caveolae, featured as flask-shaped plasma membrane (PM) invaginations, opened to the extracellular space through a 20 nm stoma (21, 3nm) having a 7 nm thick diaphragm. A small percentage of caveolae (3%), gathered as grape-like clusters, did not open directly to the extracellular space, but to irregular PM pockets having a 20-30 nm opening to the extracellular space. In visceral SMCs, caveolae were disposed in 4 - 6 rows, parallel to myofilaments, whilst aortic SMCs caveolae were arranged as clusters. This caveolar organization in rows or clusters minimizes the occupied volume, providing more space for the contractile machinery. The morphometric analysis of relative volumes (% of cell volume) showed that caveolae were more conspicuous in visceral than in vascular SMCs (myometrium - 2.40%; bladder - 3.66%, stomach - 2.61%, aorta - 1.43%). We also observed a higher number of caveolae per length unit of cell membrane in most visceral SMCs compared to vascular SMCs (myometrium - 1.06/μm, bladder - 0.74/μm, aorta - 0.57/μm, stomach - 0.48/μm). Caveolae increase the cellular perimeter up to 15% and enlarge the surface area of the plasma membrane about 80% in SMCs. Three-dimensional reconstructions (15μ3) showed that most caveolae, in both visceral and vascular SMCs, have nanocontacts with SR (87%), or with mitochondria (10%), and only 3%, apparently, have no contact with these organelles. Usually, 15 nm wide junctional spaces exist between caveolae and SR, some of them with nanostructural links between each other or with mitochondria: direct contacts (space < 2 nm or none) and molecular links, so called ‘feet’ (about 12 nm electron dense structures between organellar membranes). Direct contacts possibly allow molecular translocation between the two membranes. Electron-dense ‘feet’-like structures suggest a molecular link between these organelles responsible for intracellular Ca2+ homeostasis (excitation-contraction coupling or pharmaco-mechan-ical coupling). Close appositions (∼15 nm) have also been observed between caveolae and perinuclear SR cisterna, suggesting that caveolae might be directly implicated in excitation-transcription coupling.

Keywords: caveolae, smooth muscle cells, sarcoplasmic reticulum, mitochondria, nanocontacts, Ca2+ homeostasis, excitation-contraction coupling, excitation-transcription coupling, 3D reconstruction, nuclear envelope

References

  • 1.Palade GE. Fine structure of blood capillaries. J Appl Physiol. 1953;24:1424–36. [Google Scholar]
  • 2.Yamada E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol. 1955;1:445–458. doi: 10.1083/jcb.1.5.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Anderson RGW. The caveolae membrane system. Annu Rev Biochem. 1998;67:199–225. doi: 10.1146/annurev.biochem.67.1.199. [DOI] [PubMed] [Google Scholar]
  • 4.Ostrom RS, Insel PA. Caveolar microdomains of the sarcolemma: compartmentation of signaling molecules comes of age. Circ Res. 1999;84:1110–2. doi: 10.1161/01.res.84.9.1110. [DOI] [PubMed] [Google Scholar]
  • 5.Fujimoto T. Cell biology of caveolae and its implication for clinical medicine. Nagoya J Med Sci. 2000;63:9–18. [PubMed] [Google Scholar]
  • 6.Taggart MJ. Smooth muscle excitation-contraction coupling: a role for caveolae and caveolins. News Physiol Sci. 2001;16:61–5. doi: 10.1152/physiologyonline.2001.16.2.61. [DOI] [PubMed] [Google Scholar]
  • 7.Stan RV. Structure and function of endothelial caveo-lae. Microsc Res Tech. 2002;57:350–64. doi: 10.1002/jemt.10089. [DOI] [PubMed] [Google Scholar]
  • 8.Parton RG. Caveolae - from ultrastructure to molecular mechanisms. Nat Rev Mol Cell Biol. 2003;4:162–7. doi: 10.1038/nrm1017. [DOI] [PubMed] [Google Scholar]
  • 9.Cohen AW, Hnasko R, Schubert W, Lisanti MP. Role of caveolae and caveolins in health and disease. Physiol Rev. 2004;84:1341–79. doi: 10.1152/physrev.00046.2003. [DOI] [PubMed] [Google Scholar]
  • 10.Bergdahl A, Sward K. Caveolae-associated signalling in smooth muscle. Can J Physiol Pharmacol. 2004;82:289–99. doi: 10.1139/y04-033. [DOI] [PubMed] [Google Scholar]
  • 11.White MA, Anderson RGW. Signaling networks in living cells. Annu Rev Pharmacol Toxicol. 2005;45:587–603. doi: 10.1146/annurev.pharmtox.45.120403.095807. [DOI] [PubMed] [Google Scholar]
  • 12.Stan RV. Structure of caveolae. Biochim Biophys Acta. 2005;1746:334–48. doi: 10.1016/j.bbamcr.2005.08.008. [DOI] [PubMed] [Google Scholar]
  • 13.Daniel EE, El-Yazbi A, Cho WJ. Caveolae and calcium handling, a review and a hypothesis. J Cell Mol Med. 2006;10:529–44. doi: 10.1111/j.1582-4934.2006.tb00418.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Bolton TB. Calcium events in smooth muscles and their interstitial cells; physiological roles of sparks. J Physiol. 2006;570:5–11. doi: 10.1113/jphysiol.2005.095604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.van Meer G. The different hues of lipid rafts. Science. 2002;296:855–7. doi: 10.1126/science.1071491. [DOI] [PubMed] [Google Scholar]
  • 16.van Deurs B, Roepstorff K, Hommelgaard AM, Sandvig K. Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol. 2003;13:92–100. doi: 10.1016/s0962-8924(02)00039-9. [DOI] [PubMed] [Google Scholar]
  • 17.Munro S. Lipid rafts: elusive or illusive. Cell. 2003;115:377–388. doi: 10.1016/s0092-8674(03)00882-1. [DOI] [PubMed] [Google Scholar]
  • 18.Hardin CD, Vallejo J. Caveolins in vascular smooth muscle: form organizing function. Cardiovasc Res. 2006;69:808–15. doi: 10.1016/j.cardiores.2005.11.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Anderson RGW. Potocytosis of small molecules and ions by caveolae. Trends Cell Biol. 1993;3:69–72. doi: 10.1016/0962-8924(93)90065-9. [DOI] [PubMed] [Google Scholar]
  • 20.Pelkmans L, Kartenbeck J, Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biol. 2001;3:473–83. doi: 10.1038/35074539. [DOI] [PubMed] [Google Scholar]
  • 21.Popescu LM. Conceptual model of the excitation-contraction coupling in smooth muscle; the possible role of the surface microvesicles. Studia Biophysica (Berlin) 1974;44:141–53. [Google Scholar]
  • 22.Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 2006;20:811–27. doi: 10.1096/fj.05-5424rev. [DOI] [PubMed] [Google Scholar]
  • 23.Yu J, Bergaya S, Murata T, Alp IF, Bauer MP, Lin MI, Drab M, Kurzchalia TV, Stan RV, Sessa WC. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest. 2006;116:1222–5. doi: 10.1172/JCI27100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Fielding CJ, Fielding PE. Relationship between cholesterol trafficking and signaling in rafts and caveolae. Biochim Biophys Acta. 2003;1610:219–28. doi: 10.1016/s0005-2736(03)00020-8. [DOI] [PubMed] [Google Scholar]
  • 25.Martin S. Parton RG. Caveolin, cholesterol, and lipid bodies. Sem Cell Dev Biol. 2005;16:163–74. doi: 10.1016/j.semcdb.2005.01.007. [DOI] [PubMed] [Google Scholar]
  • 26.Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev. 2006;86:369–408. doi: 10.1152/physrev.00004.2005. [DOI] [PubMed] [Google Scholar]
  • 27.Popescu LM, Diculescu I, Zelck U, Ionescu N. Ultrastructural distribution of calcium in smooth-muscle cells of guinea-pig taenia coli - correlated electron-microscopic and quantitative study. Cell Tiss Res. 1974;154:357–78. doi: 10.1007/BF00223732. [DOI] [PubMed] [Google Scholar]
  • 28.Popescu LM, Diculescu I. Calcium in smooth muscle sarcoplasmic reticulum in situ. Conventional and X-ray analytical electron microscopy. J Cell Biol. 1975;67:911–8. doi: 10.1083/jcb.67.3.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Popescu LM. Casteels R, et al. Cytochemical study of the intracellular calcium distribution in smooth muscle: surface microvesicles and cellular calcium homeostasis. Amsterdam: Elsevier/North-Holland Biomedical Press; 1977. pp. 13–23. [Google Scholar]
  • 30.Popescu LM, Ignat P. Calmodulin-dependent Ca2+ ATPase of human smooth muscle sarcolemma. Cell Calcium. 1983;4:219–35. doi: 10.1016/0143-4160(83)90001-5. [DOI] [PubMed] [Google Scholar]
  • 31.Fujimoto T, Nakade S, Miyawaki A, Mikoshiba K, Ogawa K. Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae. J Cell Biol. 1992;119:1507–13. doi: 10.1083/jcb.119.6.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Fujimoto T. Calcium pump of plasma membrane is localized in caveolae. J Cell Biol. 1993;120:1147–57. doi: 10.1083/jcb.120.5.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Isshiki M, Anderson RGW. Function of caveolae in Ca2+ entry and Ca2+-dependent signal transduction. Traffic. 2003;4:717–23. doi: 10.1034/j.1600-0854.2003.00130.x. [DOI] [PubMed] [Google Scholar]
  • 34.Riley M, Baker PN, Tribe RM, Taggart MJ. Expression of scaffolding, signalling and contractile-filament proteins in human myometria: effects of pregnancy and labour. J Cell Mol Med. 2005;9:122–34. doi: 10.1111/j.1582-4934.2005.tb00342.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Gherghiceanu M, Popescu LM. Caveolar nanospaces in smooth muscle cells. J Cell Mol Med. 2006;10:519–28. doi: 10.1111/j.1582-4934.2006.tb00417.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Gabella G. Caveolae intracellulares and sarcoplasmic reticulum in smooth muscle. J. Cell Sci. 1971;8:601–9. doi: 10.1242/jcs.8.3.601. [DOI] [PubMed] [Google Scholar]
  • 37.Devine CE, Somlyo AV, Somplyo AP. Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J Cell Biol. 1972;52:690–718. doi: 10.1083/jcb.52.3.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Moore ED, Voigt T, Kobayashi YM, Isenberg G, Fay FS, Gallitelli MF, Franzini-Armstrong C. Organization of Ca2+ release units in excitable smooth muscle of the guinea-pig urinary bladder. Biophys J. 2004;87:1836–47. doi: 10.1529/biophysj.104.044123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Franzini-Armstrong C, Protasi F, Ramesh V. Shape, size, and distribution of Ca2+ release units and couplons in skeletal and cardiac muscles. Biophys J. 1999;77:1528–1539. doi: 10.1016/S0006-3495(99)77000-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Ciontea SM, Radu E, Regalia T, Ceafalan L, Cretoiu D, Gherghiceanu M, Braga RI, Malincenco M, Zagrean L, Hinescu ME, Popescu LM. C-kit immunopositive interstitial cells (Cajal-type) in human myometrium. J Cell Mol Med. 2005;9:407–20. doi: 10.1111/j.1582-4934.2005.tb00366.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Popescu LM, Ciontea SM, Cretoiu D, Hinescu ME, Radu E, Ionescu N, Ceausu M, Gherghiceanu M, Braga RI, Vasilescu F, Zagrean L, Ardeleanu C. Novel type of interstitial cell (Cajal-like) in human fallopian tube. J Cell Mol Med. 2005;9:479–523. doi: 10.1111/j.1582-4934.2005.tb00376.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Fiala JC. Reconstruct: a free editor for serial section microscopy. J Microsc. 2005;218:52–61. doi: 10.1111/j.1365-2818.2005.01466.x. [DOI] [PubMed] [Google Scholar]
  • 43.Weibel ER. Stereological Methods. Vol.1: Practical Methods for Biological Morphometry. New York: Academic Press; 1979. [Google Scholar]
  • 44.Darby PJ, Kwan CY, Daniel EE. Caveolae from canine airway smooth muscle contain the necessary components for a role in Ca2+ handling. Am J Physiol Lung Cell Mol Physiol. 2000;279:L1226–35. doi: 10.1152/ajplung.2000.279.6.L1226. [DOI] [PubMed] [Google Scholar]
  • 45.Je HD, Gallant C, Leavis PC, Morgan KG. Caveolin-1 regulates contractility in differentiated vascular smooth muscle. Am J Physiol Heart Circ Physiol. 2004;286:H91–8. doi: 10.1152/ajpheart.00472.2003. [DOI] [PubMed] [Google Scholar]
  • 46.Vinten J, Johnsen AH, Roepstorff P, Harpoth J, Tranum-Jensen J. Identification of a major protein on the cytosolic face of caveolae. Biochim Biophys Acta. 2005;1717:34–40. doi: 10.1016/j.bbamem.2005.09.013. [DOI] [PubMed] [Google Scholar]
  • 47.Spisni E, Tomasi V, Cestaro A, Tosatto SC. Structural insights into the function of human caveolin 1. Biochem Biophys Res Commun. 2005;338:1383–90. doi: 10.1016/j.bbrc.2005.10.099. [DOI] [PubMed] [Google Scholar]
  • 48.Yao Q, Chen J, Cao H, Orth JD, McCaffery JM, Stan RV, McNiven MA. Caveolin-1 interacts directly with dynamin-2. J Mol Biol. 2005;348:491–501. doi: 10.1016/j.jmb.2005.02.003. [DOI] [PubMed] [Google Scholar]
  • 49.Cho WJ, Daniel EE. Proteins of interstitial cells of Cajal and intestinal smooth muscle, co-localized with Caveolin 1. Amer J Physiol. 2005;288:571–85. doi: 10.1152/ajpgi.00222.2004. [DOI] [PubMed] [Google Scholar]
  • 50.Pelkmans L, Fava E, Grabner H, Habermann B, Krausz E, Zerial M. Genome-wide analysis of human kinase in clathrin- and caveolae/raft-mediated endocy-tosis. Nature. 2005;436:78–86. doi: 10.1038/nature03571. [DOI] [PubMed] [Google Scholar]
  • 51.Grilo A, Fernandez ML, Beltran M, Ramirez-Lorca R, Gonzalez MA, Royo JL, Gutierrez-Tous R, Moron FJ, Couto C, Serrano-Rios M, Saez ME, Ruiz A, Real LM. Genetic analysis of CAV1 gene in hypertension and metabolic syndrome. Thromb Haemost. 2006;95:696–701. [PubMed] [Google Scholar]
  • 52.McMahon KA, Zhu M, Know SW, Liu P, Zhao Y, Anderson GW. Detergent-free caveolae proteome suggests an interaction with ER and mitocondria. Proteomics. 2006;6:143–52. doi: 10.1002/pmic.200500208. [DOI] [PubMed] [Google Scholar]
  • 53.Popescu LM, de Bruijn WC, Diculescu I, Daems WT. Calcium compartmentalization in skeletal muscle fibers. In: Wittry DB, editor. Microbeam Analysis. San Francisco: San Francisco Press; 1980. pp. 259–64. [Google Scholar]
  • 54.Morone N, Fujiwara T, Murase K, Kasai RS, Ike H, Yuasa S, Usukura J, Kusumi A. Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J Cell Biol. 2006;174:851–62. doi: 10.1083/jcb.200606007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Wamhoff BR, Bowles DK, Owens GK. Excitation-transcription coupling in arterial smooth muscle. Circ Res. 2006;98:868–78. doi: 10.1161/01.RES.0000216596.73005.3c. [DOI] [PubMed] [Google Scholar]
  • 56.Popescu LM, de Bruijn WC. Calcium in the sarcoplasmic reticulum of smooth muscle. X-ray micro-analysis of oxalate-treated muscle fibres. Electron Microscopy. 1982;3:385–86. Hamburg, [Google Scholar]
  • 57.Somlyo AV, Gonzalez-Serratos HG, Shuman H, McClellan G, Somlyo AP. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study. J Cell Biol. 1981;90:577–94. doi: 10.1083/jcb.90.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Flynn ER, Bradley KN, Muir TC, McCarron JG. Functionally separate intracellular Ca2+ stores in smooth muscle. J Biol Chem. 2001;276:36411–8. doi: 10.1074/jbc.M104308200. [DOI] [PubMed] [Google Scholar]
  • 59.McGeown JG. Interactions between inositol 1,4,5-trisphosphate receptors and ryanodine receptors in smooth muscle: one store or two. Cell Calcium. 2004;35:613–9. doi: 10.1016/j.ceca.2004.01.016. [DOI] [PubMed] [Google Scholar]
  • 60.Poburko D, Kuo KH, Dai J, Lee CH, Van Breemen C. Organellar junctions promote targeted Ca2+ signaling in smooth muscle: why two membranes are better than one. Trends Pharmacol Sci. 2004;25:8–15. doi: 10.1016/j.tips.2003.10.011. [DOI] [PubMed] [Google Scholar]
  • 61.Michelangeli F, Ogunbayo OA, Wooton LL. A plethora of interacting organellar Ca2+ stores. Curr Opin Cell Biol. 2005;17:135–140. doi: 10.1016/j.ceb.2005.01.005. [DOI] [PubMed] [Google Scholar]
  • 62.Fameli N, Van Breemen C, Kuo KH. 2006. A quantitative model for refilling of the sarcoplasmic reticulum during vascular smooth muscle asynchronous [Ca2+] oscillations http://arxiv.org/abs/q-bio/0603001.
  • 63.Davidson SM, Duchen MR. Calcium microdomains and oxidative stress. Cell Calcium. 2006;40:561–74. doi: 10.1016/j.ceca.2006.08.017. [DOI] [PubMed] [Google Scholar]
  • 64.Filippin L, Magalha es PJ, Di Benedetto G, Colella M, Pozzan T. Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. J Biol Chem. 2003;278:39224–39234. doi: 10.1074/jbc.M302301200. [DOI] [PubMed] [Google Scholar]
  • 65.Jacobson J, Duchen MR. Interplay between mitochondria and cellular calcium signalling. Mol Cell Biochem. 2004;256-257:209–18. doi: 10.1023/b:mcbi.0000009869.29827.df. [DOI] [PubMed] [Google Scholar]
  • 66.Alonso MT, Villalobos C, Chamero P, Alvarez J, Garcia-Sancho J. Calcium microdomains in mitochondria and nucleus. Cell Calcium. 2006;40:513–25. doi: 10.1016/j.ceca.2006.08.013. [DOI] [PubMed] [Google Scholar]
  • 67.Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnoczky G. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol. 2006;174:915–21. doi: 10.1083/jcb.200604016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Jaeger J, Reinitz J. On the dynamic nature of positional information. BioEssays. 2006;28:1102–1111. doi: 10.1002/bies.20494. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES