Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 Mar 15;10(1):7–19. doi: 10.1111/j.1582-4934.2006.tb00287.x

Tissue engineering of bone: the reconstructive surgeon's point of view

U Kneser a,*, D J Schaefer b, E Polykandriotis a, R E Horch a
PMCID: PMC3933098  PMID: 16563218

Abstract

Bone defects represent a medical and socioeconomic challenge. Different types of biomaterials are applied for reconstructive indications and receive rising interest. However, autologous bone grafts are still considered as the gold standard for reconstruction of extended bone defects. The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. Tissue engineering is, according to its historic definition, an “interdisciplinary field that applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function”. It is based on the understanding of tissue formation and regeneration and aims to rather grow new functional tissues than to build new spare parts. While reconstruction of small to moderate sized bone defects using engineered bone tissues is technically feasible, and some of the currently developed concepts may represent alternatives to autologous bone grafts for certain clinical conditions, the reconstruction of largevolume defects remains challenging. Therefore vascularization concepts gain on interest and the combination of tissue engineering approaches with flap prefabrication techniques may eventually allow application of bone-tissue substitutes grown in vivo with the advantage of minimal donor site morbidity as compared to conventional vascularized bone grafts. The scope of this review is the introduction of basic principles and different components of engineered bioartificial bone tissues with a strong focus on clinical applications in reconstructive surgery. Concepts for the induction of axial vascularization in engineered bone tissues as well as potential clinical applications are discussed in detail.

Keywords: tissue engineering, bone replacement, vascularization, flap prefabrication, microsurgery, AV loop

References

  • 1.Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. Bone biology. II: Formation, form, modeling, remodeling, and regulation of cell function. Instr Course Lect. 1996;45:387–99. [PubMed] [Google Scholar]
  • 2.Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. Bone biology. I: Structure, blood supply, cells, matrix, and mineralization. Instr Course Lect. 1996;45:371–86. [PubMed] [Google Scholar]
  • 3.Ackerman LV, Spjut HJ, Abell MR. Bones and Joints (Monographs in Pathology) Williams and Wilkins; 1976. . Baltimore: [Google Scholar]
  • 4.Aubin JE. Bone stem cells. J Cell Biochem Suppl. 1998;30–31:73–82. [PubMed] [Google Scholar]
  • 5.Owen M. The origin of bone cells. Int Rev Cytol. 1970;28:213–38. doi: 10.1016/s0074-7696(08)62544-9. [DOI] [PubMed] [Google Scholar]
  • 6.Heinegard D, Oldberg A. Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J. 1989;3:2042–51. doi: 10.1096/fasebj.3.9.2663581. [DOI] [PubMed] [Google Scholar]
  • 7.Robey PG, Fedarko NS, Hefferan TE, Bianco P, Vetter UK, Grzesik W, Friedenstein A, Van de RPG, Mintz KP, Young MF. Structure and molecular regulation of bone matrix proteins. J Bone Miner Res. 1993;2:S483–7. doi: 10.1002/jbmr.5650081310. [DOI] [PubMed] [Google Scholar]
  • 8.Huang S, Ingber DE. The structural and mechanical complexity of cell-growth control. Nat Cell Biol. 1999;1:E131–8. doi: 10.1038/13043. [DOI] [PubMed] [Google Scholar]
  • 9.Lian JB, Stein GS. Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation. Iowa Orthop J. 1995;15:118–40. [PMC free article] [PubMed] [Google Scholar]
  • 10.Nomura S, Takano-Yamamoto T. Molecular events caused by mechanical stress in bone. Matrix Biol. 2000;19:91–6. doi: 10.1016/s0945-053x(00)00050-0. [DOI] [PubMed] [Google Scholar]
  • 11.Probst A, Spiegel HU. Cellular mechanisms of bone repair. J Invest Surg. 1997;10:77–86. doi: 10.3109/08941939709032137. [DOI] [PubMed] [Google Scholar]
  • 12.Olsen BR, Reginato AM, Wang W. Bone development. Annu Rev Cell Dev Biol. 2000;16:191–220. doi: 10.1146/annurev.cellbio.16.1.191. [DOI] [PubMed] [Google Scholar]
  • 13.Stein GS, Lian JB, Owen TA. Relationship of cell growth to the regulation of tissuespecific gene expression during osteoblast differentiation. FASEB J. 1990;4:3111–23. doi: 10.1096/fasebj.4.13.2210157. [DOI] [PubMed] [Google Scholar]
  • 14.Mundy GR. Regulation of bone formation by bone morphogenetic proteins and other growth factors. Clin Orthop Relat Res. 1996;324:24–8. doi: 10.1097/00003086-199603000-00004. [DOI] [PubMed] [Google Scholar]
  • 15.Stein GS, Lian JB, Stein JL, Van Wijnen AJ, Montecino M. Transcriptional control of osteoblast growth and differentiation. Physiol Rev. 1996;76:593–629. doi: 10.1152/physrev.1996.76.2.593. [DOI] [PubMed] [Google Scholar]
  • 16.Ducy P, Karsenty G. Genetic control of cell differentiation in the skeleton. Curr Opin Cell Biol. 1998;10:614–9. doi: 10.1016/s0955-0674(98)80037-9. [DOI] [PubMed] [Google Scholar]
  • 17.Reddi AH. Initiation of fracture repair by bone morphogenetic proteins. Clin Orthop Relat Res. 1998;355:S66–72. doi: 10.1097/00003086-199810001-00008. [DOI] [PubMed] [Google Scholar]
  • 18.Ducy P. Cbfal: a molecular switch in osteoblast biology. Dev Dyn. 2000;219:461–71. doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1074>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  • 19.Karsenty G. Minireview: transcriptional control of osteoblast differentiation. Endocrinology. 2001;142:2731–3. doi: 10.1210/endo.142.7.8306. [DOI] [PubMed] [Google Scholar]
  • 20.Urist MR, de Lange RJ, Finerman GA. Bone cell differentiation and growth factors. Science. 1983;13, 220:680–6. doi: 10.1126/science.6403986. [DOI] [PubMed] [Google Scholar]
  • 21.Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am. 2002;84-A:1032–44. doi: 10.2106/00004623-200206000-00022. [DOI] [PubMed] [Google Scholar]
  • 22.Perry CR. Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res. 1999;360:71–86. doi: 10.1097/00003086-199903000-00010. [DOI] [PubMed] [Google Scholar]
  • 23.Gugenheim JJ., Jr The Ilizarov method. Orthopedic and soft tissue applications. Clin Plast Surg. 1998;25:567–78. [PubMed] [Google Scholar]
  • 24.Motoki DS, Mulliken JB. The healing of bone and cartilage. Clin Plast Surg. 1990;17:527–44. [PubMed] [Google Scholar]
  • 25.Polykandriotis E, Stangl R, Hennig HH, Lennerz JK, Frank WM, Loos MD, Horch RE. The composite vastus medialis-patellar complex osseomuscular flap as a salvage procedure after complex trauma of the knee-an anatomical study and clinical application. Br J Plast Surg. 2005;58:646–51. doi: 10.1016/j.bjps.2005.01.008. [DOI] [PubMed] [Google Scholar]
  • 26.Gazdag AR, Lane JM, Glaser D, Forster RA. Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg. 1995;3:1–8. doi: 10.5435/00124635-199501000-00001. [DOI] [PubMed] [Google Scholar]
  • 27.Sassard WR, Eidman DK, Gray PM, Block JE, Russo R, Russell JL, Taboada EM. Augmenting local bone with Grafton demineralized bone matrix for posterolateral lumbar spine fusion: avoiding second site autologous bone harvest. Orthopedics. 2000;23:1059–64. doi: 10.3928/0147-7447-20001001-17. [DOI] [PubMed] [Google Scholar]
  • 28.Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996;329:300–9. doi: 10.1097/00003086-199608000-00037. [DOI] [PubMed] [Google Scholar]
  • 29.Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine. 1995;1, 20:1055–60. doi: 10.1097/00007632-199505000-00012. [DOI] [PubMed] [Google Scholar]
  • 30.Ebraheim NA, Elgafy H, Xu R. Bone-graft harvesting from iliac and fibular donor sites: techniques and complications. J Am Acad Orthop Surg. 2001;9:210–8. doi: 10.5435/00124635-200105000-00007. [DOI] [PubMed] [Google Scholar]
  • 31.Lobo Gajiwala A, Agarwal M, Puri A, D'Lima C, Duggal A. Reconstructing tumour defects: lyophilised, irradiated bone allografts. Cell Tissue Bank. 2003;4:109–18. doi: 10.1023/B:CATB.0000007029.35287.37. [DOI] [PubMed] [Google Scholar]
  • 32.Aho AJ, Ekfors T, de An PB, Aro HT, Ahonen A, Nikkanen V. Incorporation and clinical results of large allografts of the extremities and pelvis. Clin Orthop Relat Res. 1994;307:200–13. [PubMed] [Google Scholar]
  • 33.Cetiner S, Esen E, Ustun Y, Oztunc H, Tuncer I. Longterm results of the application of solvent-dehydrated bone xenograft and duramater xenograft for the healing of oroantral osseous defects: a pilot experimental study. Dent Traumatol. 2003;19:30–5. doi: 10.1034/j.1600-9657.2003.00096.x. [DOI] [PubMed] [Google Scholar]
  • 34.Swartz WM, Banis JC, Newton ED, Ramasastry SS, Jones NF, Acland R. The osteocutaneous scapular flap for mandibular and maxillary reconstruction. Plast Reconstr Surg. 1986;77:530–45. doi: 10.1097/00006534-198604000-00003. [DOI] [PubMed] [Google Scholar]
  • 35.Shea KG, Coleman DA, Scott SM, Coleman SS, Christianson M. Microvascularized free fibular grafts for reconstruction of skeletal defects after tumor resection. J Pediatr Orthop. 1997;17:424–32. [PubMed] [Google Scholar]
  • 36.Ozaki T, Hillmann A, Wuisman P, Winkelmann W. Reconstruction of tibia by ipsilateral vascularized fibula and allograft. 12 cases with malignant bone tumors. Acta Orthop Scand. 1997;68:298–301. doi: 10.3109/17453679708996706. [DOI] [PubMed] [Google Scholar]
  • 37.Babovic S, Johnson CH, Finical SJ. Free fibula donor-site morbidity: the Mayo experience with 100 consecutive harvests. J Reconstr Microsurg. 2000;16:107–10. doi: 10.1055/s-2000-7544. [DOI] [PubMed] [Google Scholar]
  • 38.Lewis G. Properties of acrylic bone cement: state of the art review. J Biomed Mater Res. 1997;2:155–82. doi: 10.1002/(sici)1097-4636(199722)38:2<155::aid-jbm10>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  • 39.Muh E, Zimmermann J, Kneser U, Marquardt J, Mulhaupt R, Stark B. Lysineurethanedimethacrylate–a novel generation of amino acid based monomers for bone cements and tissue repair. Biomaterials. 2002;23:2849–54. doi: 10.1016/s0142-9612(01)00411-2. [DOI] [PubMed] [Google Scholar]
  • 40.Zijderveld SA, Zerbo IR, Van den Bergh JP, Schulten EA, van Bruggenkate CM. Maxillary sinus floor augmentation using a beta-tricalcium phosphate (Cerasorb) alone compared to autogenous bone grafts. Int J Oral Maxillofac Implants. 2005;20:432–40. [PubMed] [Google Scholar]
  • 41.Cassidy C, Jupiter JB, Cohen M, de Lli-Santi M, Fennell C, Leinberry C, Husband J, Ladd A, Seitz WR, Constanz B. Norian SRS cement compared with conventional fixation in distal radial fractures. A randomized study. J Bone Joint Surg Am. 2003;85-A:2127–37. doi: 10.2106/00004623-200311000-00010. [DOI] [PubMed] [Google Scholar]
  • 42.Jupiter JB, Winters S, Sigman S, Lowe C, Pappas C, Ladd AL, Van Wagoner M, Smith ST. Repair of five distal radius fractures with an investigational cancellous bone cement: a preliminary report. J Orthop Trauma. 1997;11:110–6. doi: 10.1097/00005131-199702000-00008. [DOI] [PubMed] [Google Scholar]
  • 43.Thorwarth M, Wehrhan F, Schultze-Mosgau S, Wiltfang J, Schlegel KA. PRP modulates expression of bone matrix proteins in vivo without long-term effects on bone formation. Bone. 2006;38:30–40. doi: 10.1016/j.bone.2005.06.020. [DOI] [PubMed] [Google Scholar]
  • 44.Sammartino G, Tia M, Marenzi G, Von Lauro AE, D'Agostino E, Claudio PP. Use of autologous platelet-rich plasma (PRP) in periodontal defect treatment after extraction of impacted mandibular third molars. J Oral Maxillofac Surg. 2005;63:766–70. doi: 10.1016/j.joms.2005.02.010. [DOI] [PubMed] [Google Scholar]
  • 45.Altmeppen J, Hansen E, Bonnlander GL, Horch RE, Jeschke MG. Composition and characteristics of an autologous thrombocyte gel. J Surg Res. 2004;117:202–7. doi: 10.1016/j.jss.2003.10.019. [DOI] [PubMed] [Google Scholar]
  • 46.Moghadam HG, Sandor GK, Holmes HH, Clokie CM. Histomorphometric evaluation of bone regeneration using allogeneic and alloplastic bone substitutes. J Oral Maxillofac Surg. 2004;62:202–13. doi: 10.1016/j.joms.2003.10.002. [DOI] [PubMed] [Google Scholar]
  • 47.Maddox E, Zhan M, Mundy GR, Drohan WN, Burgess WH. Optimizing human demineralized bone matrix for clinical application. Tissue Eng. 2000;6:441–8. doi: 10.1089/107632700418146. [DOI] [PubMed] [Google Scholar]
  • 48.Traianedes K, Russell JL, Edwards JT, Stubbs HA, Shanahan IR, Knaack D. Donor age and gender effects on osteoinductivity of demineralized bone matrix. J Biomed Mater Res B Appl Biomater. 2004;70:21–9. doi: 10.1002/jbm.b.30015. [DOI] [PubMed] [Google Scholar]
  • 49.Pietrzak WS, Perns SV, Keyes J, Woodell-May J, McDonald NM. Demineralized bone matrix graft: a scientific and clinical case study assessment. J Foot Ankle Surg. 2005;44:345–53. doi: 10.1053/j.jfas.2005.07.006. [DOI] [PubMed] [Google Scholar]
  • 50.Andreana S, Cornelini R, Edsberg LE, Natiella JR. Maxillary sinus elevation for implant placement using calcium sulfate with and without DFDBA: six cases. Implant Dent. 2004;13:270–7. doi: 10.1097/01.id.0000136914.82891.20. [DOI] [PubMed] [Google Scholar]
  • 51.Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol. 1998;16:247–52. doi: 10.1038/nbt0398-247. [DOI] [PubMed] [Google Scholar]
  • 52.Einhorn TA. Clinical applications of recombinant human BMPs: early experience and future development. J Bone Joint Surg Am. 2003;85-A:82–8. doi: 10.2106/00004623-200300003-00014. [DOI] [PubMed] [Google Scholar]
  • 53.Kain MS, Einhorn TA. Recombinant human bone morphogenetic proteins in the treatment of fractures. Foot Ankle Clin. 2005;4:639–50. doi: 10.1016/j.fcl.2005.06.005. [DOI] [PubMed] [Google Scholar]
  • 54.Dimitriou R, Dahabreh Z, Katsoulis E, Matthews SJ, Branfoot T, Giannoudis PV. Application of recombinant BMP-7 on persistent upper and lower limb nonunions. Injury. 2005;36:S51–9. doi: 10.1016/j.injury.2005.10.010. [DOI] [PubMed] [Google Scholar]
  • 55.Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R, Aro H, Atar D, Bishay M, Borner MG, Chiron P, Choong P, Cinats J, Courtenay B, Feibel R, Geulette B, Gravel C, Haas N, Raschke M, Hammacher E, van der Velde D, Hardy P, Holt M, Josten C, Ketterl RL, Lindeque B, Lob G, Mathevon H, McCoy G, Marsh D, Miller R, Munting E, Oevre S, Nordsletten L, Patel A, Pohl A, Rennie W, Reynders P, Rommens PM, Rondia J, Rossouw WC, Daneel PJ, Ruff S, Ruter A, Santavirta S, Schildhauer TA, Gekle C, Schnettler R, Segal D, Seiler H, Snowdowne RB, Stapert J, Taglang G, Verdonk R, Vogels L, Weckbach A, Wentzensen A, Wisniewski T. BMP-2 Evaluation in Surgery for Tibial Trauma (BESTT) Study Group. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am. 2002;84-A:2123–34. doi: 10.2106/00004623-200212000-00001. [DOI] [PubMed] [Google Scholar]
  • 56.Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6. doi: 10.1126/science.8493529. [DOI] [PubMed] [Google Scholar]
  • 57.Kneser U, Kaufmann PM, Fiegel HC, Pollok JM, Kluth D, Herbst H, Rogiers X. Long-term differentiated function of heterotopically transplanted hepatocytes on threedimensional polymer matrices. J Biomed Mater Res. 1999;47:494–503. doi: 10.1002/(sici)1097-4636(19991215)47:4<494::aid-jbm5>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  • 58.Kneser U, Schaefer DJ, Munder B, Klemt C, Andree C, Stark GB. Tissue engineering of bone. Min Invas Sur & Allied Technol. 2002;3:107–16. [Google Scholar]
  • 59.Vacanti CA, Vacanti JP. Bone and cartilage reconstruction with tissue engineering approaches. Otolaryngol Clin North Am. 1994;27:263–76. [PubMed] [Google Scholar]
  • 60.Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med. 2001;52:443–51. doi: 10.1146/annurev.med.52.1.443. [DOI] [PubMed] [Google Scholar]
  • 61.Bach AD, Beier JP, Stern-Staeter J, Horch RE. Skeletal muscle tissue engineering. J Cell Mol Med. 2004;8:413–22. doi: 10.1111/j.1582-4934.2004.tb00466.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Horch RE, Kopp J, Kneser U, Beier J, Bach AD. Tissue engineering of cultured skin substitutes. J Cell Mol Med. 2005;9:592–608. doi: 10.1111/j.1582-4934.2005.tb00491.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Cornell CN, Lane JM. Current understanding of osteoconduction in bone regeneration. Clin Orthop Relat Res. 1998;355:S267–73. doi: 10.1097/00003086-199810001-00027. [DOI] [PubMed] [Google Scholar]
  • 64.Hotz G, Herr G. Bone substitute with osteoinductive biomaterials - current and future clinical applications. Int J Oral Maxillofac Surg. 1994;23:413–7. doi: 10.1016/s0901-5027(05)80033-5. [DOI] [PubMed] [Google Scholar]
  • 65.Cooper LF, Harris CT, Bruder SP, Kowalski R, Kadiyala S. Incipient analysis of mesenchymal stem-cell-derived osteogenesis. J Dent Res. 2001;80:314–20. doi: 10.1177/00220345010800010401. [DOI] [PubMed] [Google Scholar]
  • 66.Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24:4353–64. doi: 10.1016/s0142-9612(03)00339-9. [DOI] [PubMed] [Google Scholar]
  • 67.Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2002;8:1–11. doi: 10.1089/107632701753337645. [DOI] [PubMed] [Google Scholar]
  • 68.Logeart-Avramoglou D, Anagnostou F, Bizios R, Petite H. Engineering bone: challenges and obstacles. J Cell Mol Med. 2005;9:72–84. doi: 10.1111/j.1582-4934.2005.tb00338.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Kneser U, Voogd A, Ohnolz J, Buettner O, Stangenberg L, Zhang YH, Stark GB, Schaefer DJ. Fibrin gel-immobilized primary osteoblasts in calcium phosphate bone cement: in vivo evaluation with regard to application as injectable biological bone substitute. Cells Tissues Organs. 2005;179:158–69. doi: 10.1159/000085951. [DOI] [PubMed] [Google Scholar]
  • 70.Schantz JT, Teoh SH, Lim TC, Endres M, Lam CX, Hutmacher DW. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system. Tissue Eng. 2003;9:S113–26. doi: 10.1089/10763270360697021. [DOI] [PubMed] [Google Scholar]
  • 71.Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G. Tissue-engineered bone regeneration. Nat Biotechnol. 2000;18:959–63. doi: 10.1038/79449. [DOI] [PubMed] [Google Scholar]
  • 72.Mankani MH, Kuznetsov SA, Fowler B, Kingman A, Robey PG. In vivo bone formation by human bone marrow stromal cells: effect of carrier particle size and shape. Biotechnol Bioeng. 2001;72:96–107. doi: 10.1002/1097-0290(20010105)72:1<96::aid-bit13>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  • 73.Sikavitsas VI, Van den Dolder J, Bancroft GN, Jansen JA, Mikos AG. Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissueengineered constructs using a rat cranial critical size defect model. J Biomed Mater Res A. 2003;67:944–51. doi: 10.1002/jbm.a.10126. [DOI] [PubMed] [Google Scholar]
  • 74.Timmer MD, Shin H, Horch RA, Ambrose CG, Mikos AG. In Vitro cytotoxicity of injectable and biodegradable poly(propylene fumarate)-based networks: unreacted macromers, cross-linked networks, and degradation products. Biomacromolecules. 2003;4:1026–33. doi: 10.1021/bm0300150. [DOI] [PubMed] [Google Scholar]
  • 75.Stangenberg L, Schaefer DJ, Buettner O, Ohnolz J, Moebest D, Horch RE, Stark GB, Kneser U. Differentiation of osteoblasts in three-dimensional culture in porous cancellous bone matrix: quantitative analysis of gene expression based on real-time reverse transcription polymerase chain reaction. Tissue Eng. 2005;11:855–64. doi: 10.1089/ten.2005.11.855. [DOI] [PubMed] [Google Scholar]
  • 76.Groger A, Klaring S, Merten HA, Holste J, Kaps C, Sittinger M. Tissue engineering of bone for mandibular augmentation in immunocompetent minipigs: preliminary study. Scand J Plast Reconstr Surg Hand Surg. 2003;37:129–33. doi: 10.1080/02844310310007728. [DOI] [PubMed] [Google Scholar]
  • 77.Schantz JT, Hutmacher DW, Lam CX, Brinkmann M, Wong KM, Lim TC, Chou N, Guldberg RE, Teoh SH. Repair of calvarial defects with customised tissueengineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo. Tissue Eng. 2003;9:S127–39. doi: 10.1089/10763270360697030. [DOI] [PubMed] [Google Scholar]
  • 78.Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 2001;7:679–89. doi: 10.1089/107632702753503009. [DOI] [PubMed] [Google Scholar]
  • 79.Bruder SP, Fox BS. Tissue engineering of bone. Cell based strategies. Clin Orthop Relat Res. 1999;367:S68–83. doi: 10.1097/00003086-199910001-00008. [DOI] [PubMed] [Google Scholar]
  • 80.Bruder SP, Caplan AI. Terminal differentiation of osteogenic cells in the embryonic chick tibia is revealed by a monoclonal antibody against osteocytes. Bone. 1990;11:189–98. doi: 10.1016/8756-3282(90)90213-i. [DOI] [PubMed] [Google Scholar]
  • 81.Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem. 1994;56:283–94. doi: 10.1002/jcb.240560809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Aubin JE. Advances in the osteoblast lineage. Biochem Cell Biol. 1998;76:899–910. [PubMed] [Google Scholar]
  • 83.Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, Robey PG. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res. 1997;12:1335–47. doi: 10.1359/jbmr.1997.12.9.1335. [DOI] [PubMed] [Google Scholar]
  • 84.Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger J. Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med. 2001;344:1511–4. doi: 10.1056/NEJM200105173442004. [DOI] [PubMed] [Google Scholar]
  • 85.Hentz VR, Chang J. Tissue engineering for reconstruction of the thumb. N Engl J Med. 2001;344:1547–8. doi: 10.1056/NEJM200105173442011. [DOI] [PubMed] [Google Scholar]
  • 86.Ueda M, Yamada Y, Ozawa R, Okazaki Y. Clinical case reports of injectable tissueengineered bone for alveolar augmentation with simultaneous implant placement. Int J Periodontics Restorative Dent. 2005;25:129–37. [PubMed] [Google Scholar]
  • 87.Schmelzeisen R, Schimming R, Sittinger M. Making bone: implant insertion into tissue-engineered bone for maxillary sinus floor augmentation-a preliminary report. J Craniomaxillofac Surg. 2003;31:34–9. doi: 10.1016/s1010-5182(02)00163-4. [DOI] [PubMed] [Google Scholar]
  • 88.Schimming R, Schmelzeisen R. Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg. 2004;62:724–9. doi: 10.1016/j.joms.2004.01.009. [DOI] [PubMed] [Google Scholar]
  • 89.Reddi AH. Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng. 2000;6:351–9. doi: 10.1089/107632700418074. [DOI] [PubMed] [Google Scholar]
  • 90.Reddi AH. Regulation of cartilage and bone differentiation by bone morphogenetic proteins. Curr Opin Cell Biol. 1992;4:850–5. doi: 10.1016/0955-0674(92)90110-x. [DOI] [PubMed] [Google Scholar]
  • 91.Hollinger JO, Uludag H, Winn SR. Sustained release emphasizing recombinant human bone morphogenetic protein-2. Adv Drug Deliv Rev. 1998;31:303–18. doi: 10.1016/s0169-409x(97)00126-9. [DOI] [PubMed] [Google Scholar]
  • 92.Musgrave DS, Bosch P, Lee JY, Pelinkovic D, Ghivizzani SC, Whalen J, Niyibizi C, Huard J. Ex vivo gene therapy to produce bone using different cell types. Clin Orthop Relat Res. 2000;378:290–305. doi: 10.1097/00003086-200009000-00040. [DOI] [PubMed] [Google Scholar]
  • 93.Salyapongse AN, Billiar TR, Edington H. Gene therapy and tissue engineering. Clin Plast Surg. 1999;26:663–76. [PubMed] [Google Scholar]
  • 94.Wu D, Razzano P, Grande DA. Gene therapy and tissue engineering in repair of the musculoskeletal system. J Cell Biochem. 2003;88:467–81. doi: 10.1002/jcb.10332. [DOI] [PubMed] [Google Scholar]
  • 95.Luo J, Sun MH, Kang Q, Peng Y, Jiang W, Luu HH, Luo Q, Park JY, Li Y, Haydon RC, He TC. Gene therapy for bone regeneration. Curr Gene Ther. 2005;5:167–79. doi: 10.2174/1566523053544218. [DOI] [PubMed] [Google Scholar]
  • 96.Chang SC, Chuang H, Chen YR, Yang LC, Chen JK, Mardini S, Chung HY, Lu YL, Ma WC, Lou J. Cranial repair using BMP-2 gene engineered bone marrow stromal cells. J Surg Res. 2004;119:85–91. doi: 10.1016/j.jss.2003.08.003. [DOI] [PubMed] [Google Scholar]
  • 97.Nakashima S, Matsuyama Y, Nitta A, Sakai Y, Ishiguro N. Highly efficient transfection of human marrow stromal cells by nucleofection. Transplant Proc. 2005;37:2290–2. doi: 10.1016/j.transproceed.2005.03.047. [DOI] [PubMed] [Google Scholar]
  • 98.Bonadio J, Smiley E, Patil P, Goldstein S. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med. 1999;5:753–9. doi: 10.1038/10473. [DOI] [PubMed] [Google Scholar]
  • 99.Goldstein AS, Juarez TM, Helmke CD, Gustin MC, Mikos AG. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials. 2001;22:1279–88. doi: 10.1016/s0142-9612(00)00280-5. [DOI] [PubMed] [Google Scholar]
  • 100.Folkman J, Hochberg M. Self-regulation of growth in three dimensions. J Exp Med. 1973;138:745–53. doi: 10.1084/jem.138.4.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Kneser U, Stangenberg L, Ohnolz J, Buettner O, Stern-Strater J, Moebest D, Horch RE, Stark GB, Schaefer DJ. Reconstruction of critical size calvarial defects using processed bovine cancellous bone matrix and autologous osteoblasts. J Cell Mol Med. 2006 doi: 10.1111/j.1582-4934.2006.tb00429.x. submitted: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Sottile J. Regulation of angiogenesis by extracellular matrix. Biochim Biophys Acta. 2004;1654:13–22. doi: 10.1016/j.bbcan.2003.07.002. [DOI] [PubMed] [Google Scholar]
  • 103.Madeddu P. Therapeutic angiogenesis and vasculogenesis for tissue regeneration. Exp Physiol. 2005;90:315–26. doi: 10.1113/expphysiol.2004.028571. [DOI] [PubMed] [Google Scholar]
  • 104.Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF) J Cell Mol Med. 2005;9:777–94. doi: 10.1111/j.1582-4934.2005.tb00379.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Tabata Y. Tissue regeneration based on growth factor release. Tissue Eng. 2003;9:S5–15. doi: 10.1089/10763270360696941. [DOI] [PubMed] [Google Scholar]
  • 106.Elcin YM, Dixit V, Gitnick G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artif Organs. 2001;25:558–65. doi: 10.1046/j.1525-1594.2001.025007558.x. [DOI] [PubMed] [Google Scholar]
  • 107.Ahrendt G, Chickering DE, Ranieri JP. Angiogenic growth factors: a review for tissue engineering. Tissue Eng. 1998;2:117–30. [Google Scholar]
  • 108.Wong C, Inman E, Spaethe R, Helgerson S. Fibrin-based biomaterials to deliver human growth factors. Thromb Haemost. 2003;89:573–82. [PubMed] [Google Scholar]
  • 109.Sakiyama-Elbert SE, Hubbell JA. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release. 2000;65:389–402. doi: 10.1016/s0168-3659(99)00221-7. [DOI] [PubMed] [Google Scholar]
  • 110.Wenger A, Stahl A, Weber H, Finkenzeller G, Augustin HG, Stark GB, Kneser U. Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng. 2004;10:1536–47. doi: 10.1089/ten.2004.10.1536. [DOI] [PubMed] [Google Scholar]
  • 111.Mertsching H, Walles T, Hofmann M, Schanz J, Knapp WH. Engineering of a vascularized scaffold for artificial tissue and organ generation. Biomaterials. 2005;26:6610–7. doi: 10.1016/j.biomaterials.2005.04.048. [DOI] [PubMed] [Google Scholar]
  • 112.Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R. Functional arteries grown in vitro. Science. 1999;284:489–93. doi: 10.1126/science.284.5413.489. [DOI] [PubMed] [Google Scholar]
  • 113.Tremblay PL, Hudon V, Berthod F, Germain L, Auger FA. Inosculation of tissueengineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am J Transplant. 2005;5:1002–10. doi: 10.1111/j.1600-6143.2005.00790.x. [DOI] [PubMed] [Google Scholar]
  • 114.Mooney DJ, Mikos AG. Growing new organs. Sci Am. 1999;4:60–5. doi: 10.1038/scientificamerican0499-60. [DOI] [PubMed] [Google Scholar]
  • 115.Eiselt P, Kim BS, Chacko B, Isenberg B, Peters MC, Greene KG, Roland WD, Loebsack AB, Burg KJ, Culberson C, Halberstadt CR, Holder WD, Mooney DJ. Development of technologies aiding large-tissue engineering. Biotechnol Prog. 1998;14:134–40. doi: 10.1021/bp970135h. [DOI] [PubMed] [Google Scholar]
  • 116.Cassell OC, Hofer SO, Morrison WA, Knight KR. Vascularisation of tissueengineered grafts: the regulation of angiogenesis in reconstructive surgery and in disease states. Br J Plast Surg. 2002;55:603–10. doi: 10.1054/bjps.2002.3950. [DOI] [PubMed] [Google Scholar]
  • 117.Beier JP, Kneser U, Stern-Strater J, Stark GB, Bach AD. Y chromosome detection of three-dimensional tissue-engineered skeletal muscle constructs in a syngeneic rat animal model. Cell Transplant. 2004;13:45–53. doi: 10.3727/000000004772664888. [DOI] [PubMed] [Google Scholar]
  • 118.Schipper J, Ridder GJ, Maier W, Horch RE. The preconditioning and prelamination of pedicled and free microvascular anastomised flaps with the technique of vacuum assisted closure. Laryngorhinootologie. 2003;82:421–7. doi: 10.1055/s-2003-40539. [DOI] [PubMed] [Google Scholar]
  • 119.Khouri RK, Upton J, Shaw WW. Principles of flap prefabrication. Clin Plast Surg. 1992;19:763–71. [PubMed] [Google Scholar]
  • 120.Kimura N, Hasumi T, Satoh K. Prefabricated thin flap using the transversalis fascia as a carrier. Plast Reconstr Surg. 2001;108:1972–80. doi: 10.1097/00006534-200112000-00020. [DOI] [PubMed] [Google Scholar]
  • 121.Khouri RK, Upton J, Shaw WW. Prefabrication of composite free flaps through staged microvascular transfer: an experimental and clinical study. Plast Reconstr Surg. 1991;87:108–15. doi: 10.1097/00006534-199101000-00017. [DOI] [PubMed] [Google Scholar]
  • 122.Abbase EA, Shenaq SM, Spira M, El-Falaky MH. Prefabricated flaps: experimental and clinical review. Plast Reconstr Surg. 1995;96:1218–25. [PubMed] [Google Scholar]
  • 123.Gill DR, Ireland DC, Hurley JV, Morrison WA. The prefabrication of a bone graft in a rat model. J Hand Surg [Am] 1998;23:312–21. doi: 10.1016/S0363-5023(98)80133-0. [DOI] [PubMed] [Google Scholar]
  • 124.Homma K, Himi T, Hoki K, Ezoe K, Shintani T, Yamaguchi H, Fujita T. A prefabricated osteocutaneous flap for tracheal reconstruction. Plast Reconstr Surg. 2003;111:1688–92. doi: 10.1097/01.PRS.0000054161.46502.99. [DOI] [PubMed] [Google Scholar]
  • 125.Safak T, Akyurek M, Ozcan G, Kecik A, Aydin M. Osteocutaneous flap prefabrication based on the principle of vascular induction: an experimental and clinical study. Plast Reconstr Surg. 2000;105:1304–13. doi: 10.1097/00006534-200004000-00008. [DOI] [PubMed] [Google Scholar]
  • 126.Casabona F, Martin I, Muraglia A, Berrino P, Santi P, Cancedda R, Quarto R. Prefabricated engineered bone flaps: an experimental model of tissue reconstruction in plastic surgery. Plast Reconstr Surg. 1998;3:577–81. doi: 10.1097/00006534-199803000-00003. [DOI] [PubMed] [Google Scholar]
  • 127.Bernard SL, Picha GJ. The use of coralline hydroxyapatite in a “biocomposite” free flap. Plast Reconstr Surg. 1991;87:96–105. [PubMed] [Google Scholar]
  • 128.Mankani MH, Krebsbach PH, Satomura K, Kuznetsov SA, Hoyt R, Robey PG. Pedicled bone flap formation using transplanted bone marrow stromal cells. Arch Surg. 2001;136:263–70. doi: 10.1001/archsurg.136.3.263. [DOI] [PubMed] [Google Scholar]
  • 129.Terheyden H, Warnke P, Dunsche A, Jepsen S, Brenner W, Palmie S, Toth C, Rueger DR. Mandibular reconstruction with prefabricated vascularized bone grafts using recombinant human osteogenic protein-1: an experimental study in miniature pigs. Part II: transplantation. Int J Oral Maxillofac Surg. 2001;30:469–78. doi: 10.1054/ijom.2000.0008. [DOI] [PubMed] [Google Scholar]
  • 130.Terheyden H, Menzel C, Wang H, Springer IN, Rueger DR, Acil Y. Prefabrication of vascularized bone grafts using recombinant human osteogenic protein-1 - part 3: dosage of rhOP-1, the use of external and internal scaffolds. Int J Oral Maxillofac Surg. 2004;33:164–72. doi: 10.1054/ijom.2003.0500. [DOI] [PubMed] [Google Scholar]
  • 131.Warnke PH, Springer IN, Wiltfang J, Acil Y, Eufinger H, Wehmoller M, Russo PA, Bolte H, Sherry E, Behrens E, Terheyden H. Growth and transplantation of a custom vascularised bone graft in a man. Lancet. 2004;364:766–70. doi: 10.1016/S0140-6736(04)16935-3. [DOI] [PubMed] [Google Scholar]
  • 132.Erol OO, Spira M. New capillary bed formation with a surgically constructed arteriovenous fistula. Surg Forum. 1979;30:530–1. [PubMed] [Google Scholar]
  • 133.Mian R, Morrison WA, Hurley JV, Penington AJ, Romeo R, Tanaka Y, Knight KR. Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Eng. 2000;6:595–603. doi: 10.1089/10763270050199541. [DOI] [PubMed] [Google Scholar]
  • 134.Hofer SO, Knight KM, Cooper-White JJ, O'Connor AJ, Perera JM, Romeo-Meeuw R, Penington AJ, Knight KR, Morrison WA, Messina A. Increasing the volume of vascularized tissue formation in engineered constructs: an experimental study in rats. Plast Reconstr Surg. 2003;3:1186–92. doi: 10.1097/01.PRS.0000046034.02158.EB. [DOI] [PubMed] [Google Scholar]
  • 135.Cassell OC, Morrison WA, Messina A, Penington AJ, Thompson EW, Stevens GW, Perera JM, Kleinman HK, Hurley JV, Romeo R, Knight KR. The influence of extracellular matrix on the generation of vascularized, engineered, transplantable tissue. Ann N Y Acad Sci. 2001;944:429–42. doi: 10.1111/j.1749-6632.2001.tb03853.x. [DOI] [PubMed] [Google Scholar]
  • 136.Kneser U, Polykandriotis E, Ohnolz J, Heidner K, Grabinger L, Euler S, Aman KU, Hess A, Brune K, Greil P, Sturzl M, Horch RE. Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteconductive matrix using an arteriovenous loop. Tissue Eng. 2006 doi: 10.1089/ten.2006.12.1721. in press. [DOI] [PubMed] [Google Scholar]
  • 137.Polykandriotis E, Horch RE, Arkudas A, Labanaris A, Brune K, Greil P, Bach AD, Kopp J, Hess A, Kneser U. Intrinsic versus extrinsic vascularization in tissue engineering. Adv Mol Biol Med. 2006 doi: 10.1007/978-0-387-34133-0_21. in press. [DOI] [PubMed] [Google Scholar]
  • 138.Kneser U, Arkudas A, Polykandriotis E, Heidner K, Ohnolz J, Beier JP, Bach AD, Kopp J, Hess A, Horch RE. Axial prevascularization of porous matrices by means of an arteriovenous loop significantly increases initial survival of transplanted autologous osteoblasts. Tissue Eng. 2006 doi: 10.1089/ten.2006.0387. Abstract: [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES