Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 Mar 15;10(1):20–32. doi: 10.1111/j.1582-4934.2006.tb00288.x

Relationships between neurokinin receptor-expressing interstitial cells of Cajal and tachykininergic nerves in the gut

Maria-Simonetta Faussone-Pellegrini 1,*
PMCID: PMC3933099  PMID: 16563219

Abstract

The so-called interstitial cells of Cajal (ICC) are distributed throughout the muscle coat of the alimentary tract with characteristic intramual location and species-variations in structure and staining. Several ICC sub-types have been identified: ICC-DMP, ICC-MP, ICC-IM, ICC-SM. Gut motility is regulated by ICC and each sub-type is responsible for the electrical activities typical of each gut region and/or muscle layer. The interstitial position of the ICC between nerve endings contain tachykinins. Three distinct tachykinin receptors (NK1r, NK2r and NK3r) have been demonstrated by molecular biology. Each of them binds with different affinities to a series of tachykinins (SP, NKA and NKB). In the ileum, SP-immunoreactive (SP-IR) nerve fibers form a rich plexus at the deep muscular plexus (DMP), distributed around SP-negative cells, and ICC-DMP intensely express the SP-preffered receptor NK1r; conversely a faint NK1r-IR is detected on the ICC-MP and mainly after receptor internalization was induced by agonists. ICC-IM are never stained in laboratory mammals, while those of the human, antrum are NK1r-IR. RT-PCR conducted on isolated idleal ICC-MP and gastric ICC-IM showed that these cells express NK1r and NK3r. Colonic ICC, except those in humans, do not express NK1r-IR, at least in resting conditions. Outside the gut, NK1r-IR cells were seen in the arterial wall and exocrine pancreas. In the mouse gut only, NK1r-IR is present in non-neuronal cells located within the intestinal villi, so-called myoid cells, which are c-kit-negative and α-smooth muscle actin-positive. Immunohistochemistry and functional studies confirmed that ICC receive input from SP-IR terminals, with differences between ICC sub-types. In the rat, very early after birth, NK1r is expressed by the ICC-DMP and SP by the related nerve varicosities. Studies on pathological conditions are few and those on mutant strains practically absent. It has only been reported that in the inflamed ileum of rats the NK1r-IR ICC-DMP disappear and that at the peak of inflammatory conditions ICC-MP are NK1r-IR. In ileum of mice with a mutation in the W locus, ICC-DMP were seen to express c-kit-IR but not NK1-IR, and SP-IR innervation seems unchanged. In summary, there are distinct ICC populations, each of them under a different tachkininergic control and, likely, having different functions. Further studies are recommended at the aim of understanding ICC involvement in modulating/transmitting tachykininergic inputs.

Keywords: alimentary tract, interstitial cells of Cajal, ICC, neurokinin receptors, NKr, substance P, SP, immunohistochemistry

References

  • 1.Thuneberg L. Interstitial cells of Cajal: intestinal pacemaker cells. Adv Anat Embryol Cell Biol. 1982;71:1–130. [PubMed] [Google Scholar]
  • 2.Thuneberg L. Interstitial cells of Cajal. In: Schulz GS, Wood JD, Rauner BB, editors. Handbook of Physiology. Vol. I. American Physiology Society; 1989. The Gastrointestinal System. Motility and Circulation, Sect. 6, , Pt. 1, Chapt. 1, , Bethesda, MA, [Google Scholar]
  • 3.Faussone-Pellegrini MS. Comparative study of interstitial cells of Cajal. Acta Anat. 1987;130:109–26. doi: 10.1159/000146433. [DOI] [PubMed] [Google Scholar]
  • 4.Faussone-Pellegrini MS. Histogenesis, structure and relationships of interstitial cells of Cajal (ICC): from morphology to functional interpretation. Eur J Morphol. 1992;30:37–48. [PubMed] [Google Scholar]
  • 5.Faussone-Pellegrini MS. Interstitial cells of Cajal: once negligible players, now blazing protagonists. It J Anat Embryol. 2004;110:11–31. [PubMed] [Google Scholar]
  • 6.Christensen J. A commentary on the morphological identification of interstitial cells of Cajal in the gut. J Auton Nerv Syst. 1992;37:75–88. doi: 10.1016/0165-1838(92)90236-a. [DOI] [PubMed] [Google Scholar]
  • 7.Thuneberg L, Rumessen JJ, Mikkelsen HB, Peters S, Jessen H. Structural aspects of interstitial cells of Cajal as intestinal pacemaker cells. In: Huizinga JD, editor. Pacemaker Activity and Intercellular Communication. CRC Press; 1995. pp. 193–222. Boca Raton. [Google Scholar]
  • 8.Komuro T, Tokui K, Zhou DS. Identification of the interstitial cells of Cajal. Histol Histopatol. 1996;11:769–86. [PubMed] [Google Scholar]
  • 9.Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology. 1996;111:492–515. doi: 10.1053/gast.1996.v111.pm8690216. [DOI] [PubMed] [Google Scholar]
  • 10.Faussone-Pellegrini MS, Thuneberg L. Guide to the identification of interstitial cells of Cajal. Microsc Res Tech. 1999;47:248–66. doi: 10.1002/(SICI)1097-0029(19991115)47:4<248::AID-JEMT4>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  • 11.Komuro T. Comparative morphology of interstitial cells of Cajal: ultrastructural characterization. Microsc Res Tech. 1999;47:267–85. doi: 10.1002/(SICI)1097-0029(19991115)47:4<267::AID-JEMT5>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  • 12.Rumessen JJ, van de Rwinden J-M. Interstitial cells in the musculature of the gastrointestinal tract: Cajal and beyond. Int Rev Cytol. 2003;229:115–208. doi: 10.1016/s0074-7696(03)29004-5. [DOI] [PubMed] [Google Scholar]
  • 13.Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K, Nishikawa S. Requirement of c-kit for development of intestinal pacemaker system. Development. 1992;116:369–75. doi: 10.1242/dev.116.2.369. [DOI] [PubMed] [Google Scholar]
  • 14.Portbury AL, Furness JB, Young HM, Southwell BR, Vigna SR. Localisation of NK1 receptor immunoreactivity to neurons and interstitial cells of the guinea-pig gastrointestinal tract. J Comp Neurol. 1996;367:342–51. doi: 10.1002/(SICI)1096-9861(19960408)367:3<342::AID-CNE2>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  • 15.van Nucchi MG, de Giorgio R, Faussone-Pellegrini MS. NK1 receptor expression in the interstitial cells of Cajal and neurons and tachykinins distribution pattern in rat ileum during development. J Comp Neurol. 1997;383:153–62. doi: 10.1002/(sici)1096-9861(19970630)383:2<153::aid-cne3>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  • 16.Lavin ST, Southwell BR, Murphy R, Jenkinson KM, Furness JB. Activation of neurokinin 1 receptors on interstitial cells of Cajal of the guinea-pig small intestine by substance P. Histochem Cell Biol. 1998;110:263–71. doi: 10.1007/s004180050288. [DOI] [PubMed] [Google Scholar]
  • 17.van Nucchi MG, Faussone-Pellegrini MS. NK1, NK2 and NK3 tachykinin receptor localization and tachykinins distribution in the ileum of rat, guinea pig and mouse. Anat Embryol. 2000;202:247–55. doi: 10.1007/s004290000106. [DOI] [PubMed] [Google Scholar]
  • 18.Faussone-Pellegrini MS, Gay J, van Nucchi MG, Corsani L, Fioramonti J. Alterations of neurokinin receptors and interstitial cells of Cajal during and after jejunal inflammation induced by Nippostrongylus brasiliensis in the rat. Neurogastroenterol Motil. 2002;14:83–95. doi: 10.1046/j.1365-2982.2002.00306.x. [DOI] [PubMed] [Google Scholar]
  • 19.Ward SM, Sanders KM. Interstitial cells of Cajal: Primary targets of enteric motor innervation. Anat Rec. 2001;262:125–35. doi: 10.1002/1097-0185(20010101)262:1<125::AID-AR1017>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  • 20.Berezin I, Huizinga JD, Farraway L, Daniel EE. Innervation of interstitial cells of Cajal by vasoactive intestinal polypeptide containing nerves in canine colon. Can J Physiol Pharmacol. 1990;68:922–32. doi: 10.1139/y90-141. [DOI] [PubMed] [Google Scholar]
  • 21.Huizinga JD, Berezin I, Daniel EE, Chow E. Inhibitory innervation of colonic smooth muscle cells and interstitial cells of Cajal. Can J Physiol Pharmacol. 1990;68:447–54. doi: 10.1139/y90-063. [DOI] [PubMed] [Google Scholar]
  • 22.Matini P, Faussone-Pellegrini MS. Ultrastructural localisation of neuronal nitric oxide synthase immunoreactivity in the rat ileum. Neurosci Lett. 1997;229:45–8. doi: 10.1016/s0304-3940(97)00414-x. [DOI] [PubMed] [Google Scholar]
  • 23.Toma H, Nakamura KI, Emson PC, Kawabuchi M. Immunohistochemical distribution of c-kit-positive cells and nitric oxide synthase-positive nerves in the guinea-pig small intestine. J Auton Nerv Syst. 1999;75:93–9. doi: 10.1016/s0165-1838(98)00167-2. [DOI] [PubMed] [Google Scholar]
  • 24.Wang XY, Sanders KM, Ward SM. Intimate relationship between interstitial cells of Cajal and enteric nerves in the guinea-pig small intestine. Cell Tissue Res. 1999;295:247–56. doi: 10.1007/s004410051231. [DOI] [PubMed] [Google Scholar]
  • 25.Wang XY, Sanders KM, Ward SM. Relationship between interstitial cells of Cajal and enteric motor neurons in the murine proximal colon. Cell Tissue Res. 2000;302:331–42. doi: 10.1007/s004410000272. [DOI] [PubMed] [Google Scholar]
  • 26.Wang X-Y, van Nucchi MG, Nieuwmeyer F, Ye J, Faussone-Pellegrini MS, Huizinga JD. Changes in interstitial cells of Cajal at the deep muscular plexus are associated with loss of distention-induced burst-type muscle activity in mice infected by Trichinella spiralis. Am J Pathol. 2005;167:437–53. doi: 10.1016/S0002-9440(10)62988-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.van Nucchi MG, Corsani L, Faussone-Pellegrini MS. Substance P immunoreactive nerves and interstitial cells of Cajal in the rat and guinea pig ileum. A histochemical and quantitative study. Neurosci Lett. 1999;268:49–52. doi: 10.1016/s0304-3940(99)00366-3. [DOI] [PubMed] [Google Scholar]
  • 28.van Nucchi MG. Receptors in interstitial cells of Cajal: identification and possible physiological roles. Microsc Res Tech. 1999;47:325–35. doi: 10.1002/(SICI)1097-0029(19991201)47:5<325::AID-JEMT4>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  • 29.Smith VC, Sagot MA, Wong H, Buchan AM. Cellular expression of the neurokinin 1 receptor in the human antrum. J Auton Nerv Syst. 2000;79:165–72. doi: 10.1016/s0165-1838(99)00092-2. [DOI] [PubMed] [Google Scholar]
  • 30.Ward SM. Interstitial cells of Cajal in enteric neurotrasmission. Gut. 2000;47:iv40–3. doi: 10.1136/gut.47.suppl_4.iv40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Burns AJ, Lomax AE, Torihashi S, Sanders KM, Ward SM. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci USA. 1996;93:12008–13. doi: 10.1073/pnas.93.21.12008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Ward SM, Beckett EA, Wang X, Baker F, Khoyi M, Sanders KM. Interstitial cells of Cajal mediate cholinergic neurotrasmission from enteric motor neurons. J Neurosci. 2000;20:1393–403. doi: 10.1523/JNEUROSCI.20-04-01393.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Horiguchi K, Sanders KM, Ward SM. Enteric motor neurons form synaptic-like junctions with interstitial cells of Cajal in the canine gastric antrum. Cell Tissue Res. 2003;311:299–313. doi: 10.1007/s00441-002-0657-1. [DOI] [PubMed] [Google Scholar]
  • 34.Daniel EE, Berezin I. Interstitial cells of Cajal: are they major players in control of gastrointestinal motility. J Gastrointest Motil. 1992;4:1–24. [Google Scholar]
  • 35.Publicover NG, Hammond EM, Sanders KM. Amplification of nitric oxide signaling by interstitial cells isolated from canine colon. Proc Natl Acad Sci USA. 1993;90:2087–91. doi: 10.1073/pnas.90.5.2087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature. 1995;373:347–9. doi: 10.1038/373347a0. [DOI] [PubMed] [Google Scholar]
  • 37.Huizinga JD, Berezin I, Chorneyko K, Thuneberg L, Sircar K, Hewlett BR, Riddell RH. Interstitial cells of Cajal: pacemaker cells. Am J Pathol. 1998;153:2008–9. doi: 10.1016/s0002-9440(10)65715-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Faussone-Pellegrini MS, Serni S, Carini M. Distribution of interstitial cells of Cajal (ICC) and motor response characteristics in urinary bladders reconstructed from human ileum. Am J Physiol. 1997;273:G147–57. doi: 10.1152/ajpgi.1997.273.1.G147. (Gastrointest Liver Physiol 36): [DOI] [PubMed] [Google Scholar]
  • 39.Thomsen L, Robinson TL, Lee JCF, Farraway LA, Hughes MJG, Andrews DW, Huizinga JD. Interstitial cells of Cajal generate a rhythmic pacemaker current. Nature Med. 1988;4:848–51. doi: 10.1038/nm0798-848. [DOI] [PubMed] [Google Scholar]
  • 40.van Nucchi MG, Zizzo MG, Zardo C, Pieri L, Serio R, Mulè F, Faussone-Pellegrini MS. Ultrastructural changes in the interstitial cells of Cajal and gastric dysrhythmias in mice lacking full-length dystrophin (mdx mice) J Cell Physiol. 2004;199:293–309. doi: 10.1002/jcp.10470. [DOI] [PubMed] [Google Scholar]
  • 41.Huizinga JD, Thuneberg L, van de Rwinden J-M, Rumessen JJ. Interstitial cells of Cajal as targets for pharmacological intervention in gastrointestinal disorders. TIPS. 1997;18:393–403. doi: 10.1016/s0165-6147(97)01108-5. [DOI] [PubMed] [Google Scholar]
  • 42.Faussone-Pellegrini MS, Cortesini C, Romagnoli P. Sull'ultrastruttura della tunica muscolare della porzione cardiale dell'esofago e dello stomaco umano con particolare riferimento alle cosiddette cellule interstiziali del Cajal. Arch It Anat Embriol. 1977;82:157–77. [PubMed] [Google Scholar]
  • 43.Thuneberg L. One hundred years of interstitial cells of Cajal. Microsc Res Tech. 1999;47:223–38. doi: 10.1002/(SICI)1097-0029(19991115)47:4<223::AID-JEMT2>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  • 44.Ordog T, Ward SM, Sanders KM. Interstitial cells of Cajal generate electrical slow waves in the murine stomach. J Physiol (Lond) 1999;518:257–69. doi: 10.1111/j.1469-7793.1999.0257r.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Porcher C, Orsoni P, Berdah S, Monges G, Mazet B. Distribution of heme oxygenase 2 in nerves and c-kit+ interstitial cells in human stomach. Histochem Cell Biol. 1999;112:317–22. doi: 10.1007/s004180050453. [DOI] [PubMed] [Google Scholar]
  • 46.Huizinga JD. Physiology and pathophysiology of interstitial cells of Cajal: from bench to beside. II. Gastric motility: lessons from mutant mice on slow waves and innervation. Am J Physiol Gastrointest Liver Physiol. 2001;281:G1129–34. doi: 10.1152/ajpgi.2001.281.5.G1129. [DOI] [PubMed] [Google Scholar]
  • 47.Ward SM, Morris G, Reese L, Wang XY, Sanders KM. Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the lower esophageal and pyloric sphincters. Gastroenterology. 1998;115:314–29. doi: 10.1016/s0016-5085(98)70198-2. [DOI] [PubMed] [Google Scholar]
  • 48.Dickens EJ, Edward FR, Hirst GD. Selective knockout of intramuscular interstitial cells reveals their role in generation of slow waves in mouse stomach. J Physiol (Lond) 2001;531:827–33. doi: 10.1111/j.1469-7793.2001.0827h.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Horiguchi K, Semple GSA, Sanders KM, Ward SM. Distribution of pacemaker function through the tunica muscularis of the canine gastric antrum. J Physiol (Lond) 2001;537:237–50. doi: 10.1111/j.1469-7793.2001.0237k.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Hirst GDS, Beckett EAH, Sanders KM, Ward SM. Regional variation in contribution of myenteric and intramuscular interstitial cells of Cajal to generation of slow waves in mouse gastric antrum. J Physiol (Lond) 2002;540:1003–12. doi: 10.1113/jphysiol.2001.013672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Kim TW, Beckett EA, Hanna R, Koh SD, Ordog T, Ward SM, Sanders KM. Regulation of pacemaker frequency in the murine gastric antrum. J Physiol (Lond) 2002;538:145–57. doi: 10.1113/jphysiol.2001.012765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.McLaren G, Ward SM, Sanders KM. Interstitial cells of the deep muscular plexus mediate nitric oxide-dependent neurotransmission in the small intestine. Gastroenterology. 1997;112:A786. [Google Scholar]
  • 53.Jimenez M, Cayabyab FS, Vergara P, Daniel EE. Heterogeneity in electrical activity of the canine ileal circular muscle: interaction of two pacemakers. Neurogastroenterol Motil. 1996;8:339–49. doi: 10.1111/j.1365-2982.1996.tb00272.x. [DOI] [PubMed] [Google Scholar]
  • 54.Hershey AD, Krause JE. Molecular characterization of a functional cDNA encoding the rat substance P receptor. Science. 1990;247:958–62. doi: 10.1126/science.2154852. [DOI] [PubMed] [Google Scholar]
  • 55.Shigemoto R, Yokota Y, Tsushida K, Nakanishi S. Cloning and expression of a rat neuromedin K receptor cDNA. J Biol Chem. 1990;265:623–8. [PubMed] [Google Scholar]
  • 56.Maggi CA, Patacchini P, Rovero P, Giachetti A. Tachykinin receptors and tachykinin receptor antagonists. Review. J Auton Pharmacol. 1993;13:23–93. doi: 10.1111/j.1474-8673.1993.tb00396.x. [DOI] [PubMed] [Google Scholar]
  • 57.Maggi CA. The mammalian tachykinin receptors. Gen Pharmacol. 1995;5:911–44. doi: 10.1016/0306-3623(94)00292-u. [DOI] [PubMed] [Google Scholar]
  • 58.Regoli D, Boudon A, Fauchere JL. Receptors and antagonists for substance P and related peptides. Pharmacol Rev. 1994;46:551–99. [PubMed] [Google Scholar]
  • 59.Gitter BD, Waters DC, Burns RF, Mason NR, Nixon JA, Howbert JJ. Species differences in affinities of nonpeptide antagonists for substance P receptors. Eur J Pharmacol. 1991;197:237–8. doi: 10.1016/0014-2999(91)90532-u. [DOI] [PubMed] [Google Scholar]
  • 60.Barr AJ, Watson SP. Non-peptide antagonists, CP 96,345 and RP 67, 580 distinguish species variants in tachykinin NK1 receptors. Br J Pharmacol. 1993;108:223–7. doi: 10.1111/j.1476-5381.1993.tb13466.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Fong TM, Yu H, Strader CD. Molecular basis for the species selectivity of the neurokinin-1 receptor antagonist CD 96, 345 and antagonist RP 67, 580. J Biol Chem. 1992;267:25668–71. [PubMed] [Google Scholar]
  • 62.Vigna SR, Bowden JJ, McDonald DM, Fisher J, Okamoto A, McVey DC, Payan DG, Bunnett NW. Characterization of antibodies to the rat substance P (NK1) receptor and to a chimeric substance P receptor expressed in mammalian cells. J Neurosci. 1994;14:834–45. doi: 10.1523/JNEUROSCI.14-02-00834.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Grady EF, Baluk P, Bohm S, Gamp PD, Wong H, Payan DG, Ansel J, Portbury AL, Furness JB, McDonald DM, Bunnett NW. Characterization of antisera specific to NK1, NK2, and NK3 neurokinin receptors and their utilization to localize receptors in the rat gastrointestinal tract. J Neurosci. 1996;16:6975–86. doi: 10.1523/JNEUROSCI.16-21-06975.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Sternini C, Su D, Gamp PD, Bunnett NW. Cellular sites of expression of the neurokinin1 receptor in the rat gastrointestinal tract. J Comp Neurol. 1995;358:531–40. doi: 10.1002/cne.903580406. [DOI] [PubMed] [Google Scholar]
  • 65.Mann PT, Southwell BR, Ding YK, Shigemoto R, Mizuno N, Furness JB. Localization of neurokinin 3 (NK3) receptor immunoreactivity in the rat gastrointestinal tract. Cell Tissue Res. 1997;289:1–9. doi: 10.1007/s004410050846. [DOI] [PubMed] [Google Scholar]
  • 66.Iino S, Ward SM, Sanders KM. Interstitial cells of Cajal are functionally innervated by excitatory motor neurons in the murine intestine. J Physiol (Lond) 2004;556:521–30. doi: 10.1113/jphysiol.2003.058792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Harrington AM, Hutson JM, Southwell BR. Immunohistochemical localization of substance P NK1 receptor in guinea pig distal colon. Neurogastroenterol Motil. 2005;17:727–37. doi: 10.1111/j.1365-2982.2005.00680.x. [DOI] [PubMed] [Google Scholar]
  • 68.Petitet F, Saffroy M, Torrens Y, Lavielle S, Chassing G, Loeuillet D, Glowinski J, Beaujouan JC. Possible existence of a new tachykinin receptor subtype in the guinea pig ileum. Peptides. 1992;13:383–8. doi: 10.1016/0196-9781(92)90125-m. [DOI] [PubMed] [Google Scholar]
  • 69.Southwell BR, Furness JB. Immunohistochemical demonstration of the NK(1) tachykinin receptor on muscle and epithelia in guinea pig intestine. Gastroenterology. 2001;120:1140–51. doi: 10.1053/gast.2001.23251. [DOI] [PubMed] [Google Scholar]
  • 70.Holzer P, Holzer-Petsche U. Tachykinins in the gut. Part I. Expression, release and motor function. Pharmacol Ther. 1997;73:173–217. doi: 10.1016/s0163-7258(96)00195-7. [DOI] [PubMed] [Google Scholar]
  • 71.Otzuka M, Yoshioka K. Neurotrasmitter functions of mammalian tachykinins. Physiol Rev. 1993;73:229–308. doi: 10.1152/physrev.1993.73.2.229. [DOI] [PubMed] [Google Scholar]
  • 72.Johnson PJ, Bornstein JC, Yuan SY, Furness JB. Analysis of contributions of acetylcholine and tachykinins to neuro-neuronal transmission in motility reflexes in the guinea pig ileum. Br J Pharmacol. 1996;118:973–83. doi: 10.1111/j.1476-5381.1996.tb15495.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Costa M, Cuello AC, Furness JB, Franco R. Distribution of enteric neurons showing immunoreactivity for substance P in the guinea-pig ileum. Neuroscience. 1980;5:323–31. doi: 10.1016/0306-4522(80)90108-6. [DOI] [PubMed] [Google Scholar]
  • 74.Furness JB, Young HM, Pompolo S, Bornstein JC, Kunze WAA, McConalogue K. Plurichemical transmission and chemical coding of neurons in the digestive tract. Gastroenterology. 1995;108:554–63. doi: 10.1016/0016-5085(95)90086-1. [DOI] [PubMed] [Google Scholar]
  • 75.Ibba Manneschi L, Pacini S, Corsani L, Bechi P, Faussone-Pellegrini MS. Interstitial cells of Cajal in the human stomach: distribution and relationship with enteric innervation. Histol Histopathol. 2004;19:1153–64. doi: 10.14670/HH-19.1153. [DOI] [PubMed] [Google Scholar]
  • 76.Boutaghou-Cherid H, Porcher C, Liberge M, Jule Y, Bunnett NW, Christen MO. 2005. Expression of the neurokinin type 1 receptor in the human colon Auton Neurosci ; [Epub ahead of print] [DOI] [PubMed]
  • 77.Epperson A, Hatton WJ, Callaghan B, Doherty P, Walker RL, Sanders KM, Ward SM, Horowitz B. Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am J Physiol Cell Physiol. 2000;279:C529–39. doi: 10.1152/ajpcell.2000.279.2.C529. [DOI] [PubMed] [Google Scholar]
  • 78.Jun JY, Choi S, Yeum CH, You HJ, Park CK, Kim MY, Kong ID, Kim MJ, Lee KP, So I, Kim KW. Substance P induces inward current and regulates pacemaker currents through tachykinin NK1 receptor in cultured interstitial cells of Cajal of murine small intestine. Eur J Pharmacol. 2004;495:35–42. doi: 10.1016/j.ejphar.2004.05.022. [DOI] [PubMed] [Google Scholar]
  • 79.Bobryshev YV. Subset of cells immunopositive for neurokinin-1 receptor identified as arterial interstitial cells of Cajal in human large arteries. Cell Tissue Res. 2005;321:45–55. doi: 10.1007/s00441-004-1061-9. [DOI] [PubMed] [Google Scholar]
  • 80.Popescu LM, Hinescu ME, Ionescu N, Ciontea SM, Cretoiu D, Ardeleanu C. Interstitial cells of Cajal in pancreas. J Cell Mol Med. 2005;9:169–90. doi: 10.1111/j.1582-4934.2005.tb00347.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Komuro T. Re-evaluation of fibroblasts and fibroblastlike cells. Anat Embryol. 1990;182:103–12. doi: 10.1007/BF00174011. [DOI] [PubMed] [Google Scholar]
  • 82.Southwell BR, Woodman HL, Rojal SJ, Furness JB. Movement of villi induces endocytosis of NK1 receptors in myenteric neurons from guinea-pig ileum. Cell Tissue Res. 1998;292:37–45. doi: 10.1007/s004410051032. [DOI] [PubMed] [Google Scholar]
  • 83.Nieuwmeyer F, Ye Y, Huizinga JD. 2005. GR 73632 and SPF increase distention-induced peristalsis through activation of NK1 receptors on smooth muscle and ICC J Pharmacol Exp Ther ; [Epub ahead of print]
  • 84.van Nucchi MG, Corsani L, Faussone-Pellegrini MS. Co-distribution of NK2 tachykinin receptors and Substance P in nerve endings of guinea pig ileum. Neurosci Lett. 2000;287:71–5. doi: 10.1016/s0304-3940(00)01108-3. [DOI] [PubMed] [Google Scholar]
  • 85.Faussone-Pellegrini MS. Morphogenesis of the special circular muscle layer and of the interstitial cells of Cajal related to the plexus muscularis profundus of mouse intestinal muscle coat. An E.M. study. Anat Embryol. 1984;160:151–8. doi: 10.1007/BF00303144. [DOI] [PubMed] [Google Scholar]
  • 86.Keranen U, Kiviluoto T, Jarvinen H, Back N, Kivilaakso E, Soinila S. Changes in substance Pimmunoreactive innervation of human colon associated with ulcerative colitis. Dig Dis Sci. 1995;40:2250–8. doi: 10.1007/BF02209015. [DOI] [PubMed] [Google Scholar]
  • 87.Kimura M, Masuda T, Hiwatashi N, Toyota T, Nagura H. Changes in neuropeptide-containing nerves in human colonic mucosa with inflammatory bowel disease. Pathol Int. 1994;44:624–34. doi: 10.1111/j.1440-1827.1994.tb01723.x. [DOI] [PubMed] [Google Scholar]
  • 88.Mazelin L, Theodorou V, More J, Emonds-Alt X, Fioramonti J, Bueno L. Comparative effects of nonpeptide tachykinin receptor antagonists on experimental gut inflammation in rats and guinea-pigs. Life Sci. 1998;63:293–304. doi: 10.1016/s0024-3205(98)00271-9. [DOI] [PubMed] [Google Scholar]
  • 89.Von Sebastiano P, Grossi L, Von Mola FF. SR140333, a substance P receptor antagonist, influences morphological and motor changes in rat experimental colitis. Dig Dis Sci. 1999;44:439–44. doi: 10.1023/a:1026639509036. [DOI] [PubMed] [Google Scholar]
  • 90.Mantyh CR, Vigna SR, Bollinger RR, Mantyh PW, Maggio JE, Pappas TN. Differential expression of substance P receptors in patients with Crohn's disease and ulcerative colitis. Gastroenterology. 1995;109:850–60. doi: 10.1016/0016-5085(95)90394-1. [DOI] [PubMed] [Google Scholar]
  • 91.van Nucchi MG, Zardo C, Corsani L, Faussone-Pellegrini MS. Interstitial cells of Cajal, enteric neurons, and smooth muscle and myoid cells of the murine gastrointestinal tract express full-length dystrophin. Histochem Cell Biol. 2002;118:449–57. doi: 10.1007/s00418-002-0470-7. [DOI] [PubMed] [Google Scholar]
  • 92.Ward SM, Burns AJ, Torihashi S, Sanders KM. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol (Lond) 1994;480:91–7. doi: 10.1113/jphysiol.1994.sp020343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Sanders KM, Ordog T, Koh SD, Torihashi S, Ward SM. Development and plasticity of interstitial cells of Cajal. Neurogastroenterol Motil. 1999;11:311–38. doi: 10.1046/j.1365-2982.1999.00164.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES