Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 Mar 15;10(1):33–44. doi: 10.1111/j.1582-4934.2006.tb00289.x

Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions

Arthur M Butt a,*, Amanpreet Kalsi b
Editor: EC Toescu
PMCID: PMC3933100  PMID: 16563220

Abstract

Glia in the central nervous system (CNS) express diverse inward rectifying potassium channels (Kir). The major function of Kir is in establishing the high potassium (K+) selectivity of the glial cell membrane and strongly negative resting membrane potential (RMP), which are characteristic physiological properties of glia. The classical property of Kir is that K+ flows inwards when the RMP is negative to the equilibrium potential for K+ (Ek), but at more positive potentials outward currents are inhibited. This provides the driving force for glial uptake of K+ released during neuronal activity, by the processes of “K+ spatial buffering” and “K+ siphoning”, considered a key function of astrocytes, the main glial cell type in the CNS. Glia express multiple Kir channel subtypes, which are likely to have distinct functional roles related to their differences in conductance, and sensitivity to intracellular and extracellular factors, including pH, ATP, G-proteins, neurotransmitters and hormones. A feature of CNS glia is their specific expression of the Kir4.1 subtype, which is a major K+ conductance in glial cell membranes and has a key role in setting the glial RMP. It is proposed that Kir4.1 have a primary function in K+ regulation, both as homomeric channels and as heteromeric channels by co-assembley with Kir5.1 and probably Kir2.0 subtypes. Significantly, Kir4.1 are also expressed by oligodendrocytes, the myelin-forming cells of the CNS, and the genetic ablation of Kir4.1 are also expressed by Oligodendrocytes, the myelin-forming cells of the CNS, and the genetic ablation of Kir4.1 results in severe hypomyelination. Hence, Kir, and in particular Kir4.1, are key regulators of glial functions, which in turn determine neuronal excitability and axonal conduction.

Keywords: Kir, inward rectifying potassium channel, Kir4.1, glia, astrocyte, oligodendrocyte, myelin resting membrane, potential, potassium spatial buffering

References

  • 1.Kuffler SW, Nicholls JG, Orkand RK. Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol. 1966;29:768–87. doi: 10.1152/jn.1966.29.4.768. [DOI] [PubMed] [Google Scholar]
  • 2.Orkand RK, Nicholls JG, Kuffler SW. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol. 1966;29:788–806. doi: 10.1152/jn.1966.29.4.788. [DOI] [PubMed] [Google Scholar]
  • 3.Sontheimer H. Voltage-dependent ion channels in glial cells. Glia. 1994;11:156–72. doi: 10.1002/glia.440110210. [DOI] [PubMed] [Google Scholar]
  • 4.Newman EA, Frambach DA, Odette LL. Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science. 1984;225:1174–5. doi: 10.1126/science.6474173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Verkhratsky A, Steinhauser C. Ion channels in glial cells. Brain Res Rev. 2000;32:380–412. doi: 10.1016/s0165-0173(99)00093-4. [DOI] [PubMed] [Google Scholar]
  • 6.Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience. 2004;129:1045–56. doi: 10.1016/j.neuroscience.2004.06.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Newman EA. High potassium conductance in astrocyte endfeet. Science. 1986;2333:453–4. doi: 10.1126/science.3726539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Newman EA. Inward-rectifying potassium channels is retinal glial (Muller) cells. J Neurosci. 1993;13:3333–45. doi: 10.1523/JNEUROSCI.13-08-03333.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Müller T, Fritschy J, Grosche GD, Pratt H, Mohler H, Kettenmann H. Developmental regulation of voltagegated K+ channel and GABAA receptor expression in Bergmann glial cells. J Neurosci. 1994;14:2503–14. doi: 10.1523/JNEUROSCI.14-05-02503.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA. Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci. 2000;20:5733–40. doi: 10.1523/JNEUROSCI.20-15-05733.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Steinhauser C, Berger T, Frotscher M, Kettenmann H. Heterogeneity in the membrane current pattern of identified glial cells in the hippocampal slice. Eur J Neurosci. 1992;4:472–84. doi: 10.1111/j.1460-9568.1992.tb00897.x. [DOI] [PubMed] [Google Scholar]
  • 12.McKhann GM, D'Ambrosio R, Janigro D. Heterogeneity of astrocyte resting membrane potentials and intercellular coupling revealed by whole-cell and gramicidin-perforated patch recordings from cultured neocortical and hippocampal slice astrocytes. J Neurosci. 1997;17:6850–63. doi: 10.1523/JNEUROSCI.17-18-06850.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.D'Ambrosio R, Wenzel J, Schwartzkroin PA, McKhann GM, Janigro D. Functional specialization and topographic segregation of hippocampal astrocytes. J Neurosci. 1998;18:4425–38. doi: 10.1523/JNEUROSCI.18-12-04425.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Zhou M, Kimelberg HK. Freshly isolated astrocytes from rat hippocampus show two distinct current patterns and different [K+]o uptake capabilities. J Neurophysiol. 2000;84:2746–57. doi: 10.1152/jn.2000.84.6.2746. [DOI] [PubMed] [Google Scholar]
  • 15.Bolton S, Greenwood K, Hamilton N, Butt AM. Heterogeneity of astrocyte resting membrane potentials in the isolated rodent optic nerve Glia submitted. [DOI] [PubMed]
  • 16.Holthoff K, Witte OW. Directed spatial potassium redistribution in rat cortex. Glia. 2000;29:288–92. doi: 10.1002/(sici)1098-1136(20000201)29:3<288::aid-glia10>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  • 17.Soliven B, Szuchet S, Arnason BGW, Nelson DJ. Expression and modulation of K+ currents in oligodendrocytes: a possible role in myelinogenesis. Dev Neurosci. 1989;11:118–31. doi: 10.1159/000111893. [DOI] [PubMed] [Google Scholar]
  • 18.Sontheimer H, Trotter J, Schachner M, Kettenmann H. Channel expression correlates with differentiation stage during the development of oligodendrocytes from their precursor cells in culture. Neuron. 1989;2:1135–45. doi: 10.1016/0896-6273(89)90180-3. [DOI] [PubMed] [Google Scholar]
  • 19.Berger T, Schnitzer J, Kettenmann H. Developmental changes in the membrane current pattern, K+ buffer capacity and morphology of glial cells in the corpus callosum slice. J Neurosci. 1991;11:3008–24. doi: 10.1523/JNEUROSCI.11-10-03008.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Neusch C, Rozengurt N, Jacobs RE, Lester HA, Kofuji P. Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci. 2001;21:5429–38. doi: 10.1523/JNEUROSCI.21-15-05429.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Bolton S, Butt AM. Cyclic AMP mediated regulation of the resting membrane potential in myelin-forming oligodendrocytes in the isolated intact rat optic nerve Exp Neurol submitted. [DOI] [PubMed]
  • 22.Hille B. Ionic channels in excitable membranes. 2nd ed. Sinauer; 1992. pp. 127–30. . Sutherland, ; [Google Scholar]
  • 23.Doupnik CA, Davidson N, Lester HA. The inward rectifier potassium channel family. Curr Opin Neurobiol. 1995;5:268–77. doi: 10.1016/0959-4388(95)80038-7. [DOI] [PubMed] [Google Scholar]
  • 24.Isomoto S, Kondo C, Kurachi Y. Inwardly rectifying potassium channels: their molecular heterogeneity and function. Jpn J Physiol. 1997;47:11–39. doi: 10.2170/jjphysiol.47.11. [DOI] [PubMed] [Google Scholar]
  • 25.Nichols CG, Lopatin AN. Inward rectifier potassium channels. Ann Rev Physiol. 1997;59:171–91. doi: 10.1146/annurev.physiol.59.1.171. [DOI] [PubMed] [Google Scholar]
  • 26.Ruppersberg JP. Intracellular regulation of inward rectifier K+ channels. Pflugers Arch. 2000;441:1–11. doi: 10.1007/s004240000380. [DOI] [PubMed] [Google Scholar]
  • 27.Fakler B, Ruppersberg JP. Functional and molecular diversity classifies the family of inward-rectifier K+ channels. Cell Physiol Biochem. 1996;6:195–209. [Google Scholar]
  • 28.Stanfield PR, Nakajima S, Nakajima Y. Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol. 2002;145:47–79. doi: 10.1007/BFb0116431. [DOI] [PubMed] [Google Scholar]
  • 29.Krapivinsky G, Gordon EA, Wickman K, Velimirovic B, Krapivinsky L, Clapham DE. The G-protein-gated atrial K+ channel IKAch is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature. 1995;374:135–41. doi: 10.1038/374135a0. [DOI] [PubMed] [Google Scholar]
  • 30.Schoots O, Wilson JM, Ethier N, Bigras E, Hebert TE, Van Tol HHM. Co-expression of human Kir3 subunits can yield channels with different functional properties. Cell Signal. 1999;11:871–83. doi: 10.1016/s0898-6568(99)00059-5. [DOI] [PubMed] [Google Scholar]
  • 31.Tucker SJ, Bond CT, Herson P, Pessia M, Adelman JP. Inhibitory interactions between two inward rectifier K+ channel subunits mediated by the transmembrane domains. J Biol Chem. 1996;271:5866–70. doi: 10.1074/jbc.271.10.5866. [DOI] [PubMed] [Google Scholar]
  • 32.Fakler B, Bond CT, Adelman JP, Ruppersberg JP. Heterooligomeric assembly of inward-rectifier K+ channels from subunits of different subfamilies: Kir2.1 (IRK1) and Kir4.1 (BIR10) Pflugers Arch. 996(433):77–83. doi: 10.1007/s004240050251. [DOI] [PubMed] [Google Scholar]
  • 33.Pessia M, Tucker SJ, Lee K, Bond CT, Adelman JP. Subunit positional effects revealed by novel heteromeric inwardly rectifying K+ channels. EMBO J. 1996;15:2980–7. [PMC free article] [PubMed] [Google Scholar]
  • 34.Casamassima M, D'Adamo MC, Pessia M, Tucker SJ. Identification of a heteromeric interaction that influences the rectification, gating, and pH sensitivity of Kir4.1/Kir5.1 potassium channels. J Biol Chem. 2003;278:43533–40. doi: 10.1074/jbc.M306596200. [DOI] [PubMed] [Google Scholar]
  • 35.de Rst C, Karschin C, Wischmeyer E, Hirsch JR, Preisig-Muller R, Rajan S, Engel H, Grzeschik K, Daut J, Karschin A. Genetic and functional linkage of Kir5.1 and Kir2.1 channel subunits. FEBS Lett. 2001;491:305–11. doi: 10.1016/s0014-5793(01)02202-5. [DOI] [PubMed] [Google Scholar]
  • 36.Brown DA. G-proteins and potassium currents in neurons. Ann Rev Physiol. 1990;52:215–42. doi: 10.1146/annurev.ph.52.030190.001243. [DOI] [PubMed] [Google Scholar]
  • 37.Koyrakh L, Luján R, Colón J, Karschin C, Kurachi Y, Karschin A. Wickman K. Molecular and cellular diversity of neuronal G-protein-gated potassium channels. J Neurosci. 2005;25:11468–78. doi: 10.1523/JNEUROSCI.3484-05.2005. , and. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Ashcroft SJ, Ashcroft FM. Properties and functions of ATP-sensitive K-channels. Cell Signal. 1990;2:197–214. doi: 10.1016/0898-6568(90)90048-f. [DOI] [PubMed] [Google Scholar]
  • 39.Ito M, Inanobe A, Horio Y, Hibio H, Isomoto S, Ito H, Mori K, Tonosaki A, Tomoike H, Kurachi Y. Immunolocalisation of an inwardly rectifying K+ channel, KAB-2 (Kir4.1), in the basolateral membrane of the renal distal tubular epithelia. FEBS Letts. 1996;388:11–5. doi: 10.1016/0014-5793(96)00502-9. [DOI] [PubMed] [Google Scholar]
  • 40.Wang W, Hebert SC, Giebisch G. Renal K+ channels: Structure and function. Ann Rev Physiol. 1997;59:413–36. doi: 10.1146/annurev.physiol.59.1.413. [DOI] [PubMed] [Google Scholar]
  • 41.Lourdel S, Paulais M, Cluzeaud F, Bens M, Tanemoto M, Kurachi Y, van de Walle A, Teulon J. An inward rectifier K+ channel at the basolateral membrane of the mouse distal convoluted tubule: similarities with Kir4-Kir5.1 heteromeric channels. J Physiol. 2002;538:391–404. doi: 10.1113/jphysiol.2001.012961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Bayliss DA, Sirois JE, Talley EM. The TASK family: Two-pore domain background K+ channels. Mol. Intervent. 2003;3:205–18. doi: 10.1124/mi.3.4.205. [DOI] [PubMed] [Google Scholar]
  • 43.Lesage F. Pharmacology of neuronal background potassium channels. Neuropharmacol. 2003;44:1–7. doi: 10.1016/s0028-3908(02)00339-8. [DOI] [PubMed] [Google Scholar]
  • 44.Lopes CM, Rohacs T, Czirjak G, Balla T, Enyedi P, Logothetis DE. PIP2 hydrolysis underlies agonistinduced inhibition and regulates voltage gating of twopore domain K+ channels. J Physiol. 2005;564:117–29. doi: 10.1113/jphysiol.2004.081935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Xian Tao Li, Dyachenko V, Zuzarte M, Putzke C, Preisig-Muller R, Isenberg G, Daut J. 2005. The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle Cardiovasc Res ; in press. [DOI] [PubMed]
  • 46.Sanders KM, Koh SD. 2005. Two-pore domain potassium channels in smooth muscles: new components of myogenic regulation J Physiol ; in press.
  • 47.Franks NP, Honore E. The TREK K2P channels and their role in general anaesthesia and neuroprotection. TIPS. 2004;25:601–8. doi: 10.1016/j.tips.2004.09.003. [DOI] [PubMed] [Google Scholar]
  • 48.Liu C, Cotten JF, Schuyler JA, Fahlman CS, Au JD, Bickler PE, Yost CS. Protective effects of TASK-3 (KCNK9) and related 2P K channels during cellular stress. Brain Res. 2005;1031:164–73. doi: 10.1016/j.brainres.2004.10.029. [DOI] [PubMed] [Google Scholar]
  • 49.Patel AJ, Lazdunski M. The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pflugers Arch. 2004;448:261–73. doi: 10.1007/s00424-004-1255-8. [DOI] [PubMed] [Google Scholar]
  • 50.Takumi T, Ishii T, Horio Y, Morishige K-I, Takahashi N, Yamada M, Yamashita T, Kiyama H, Sohmiya K, Nakanishi S, Kurachi Y. A novel ATP-dependant inward rectifier potassium channel expressed predominantly in glial cells. J Biol Chem. 1995;270:16339–46. doi: 10.1074/jbc.270.27.16339. [DOI] [PubMed] [Google Scholar]
  • 51.Ishii M, Horio Y, Tada Y, Hibino H, Inanobe A, Ito M, Yamada M, Gotow T, Uchiyama Y, Kurachi Y. Expression and clustered distribution of an inwardly rectifying potassium channel, KAB-2/ Kir4.1, on mammalian retinal Müller cell membrane: their regulation by insulin and laminin signals. J Neurosci. 1997;17:7725–35. doi: 10.1523/JNEUROSCI.17-20-07725.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Poopalasundaram S, Knott C, Shamotienko OG, Foran PG, Dolly JO, Ghiani CA, Gallo V, Wilkin GP. Glial heterogeneity in expression of the inwardly rectifying K+ channel, Kir4.1, in adult rat CNS. Glia. 2000;30:362–72. doi: 10.1002/(sici)1098-1136(200006)30:4<362::aid-glia50>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
  • 53.Schroder W, Hinterkeuser S, Seifert G, Schramm J, Jabs R, Wilkin GP, Steinhauser C. Functional and molecular properties of human astrocytes in acute hippocampal slices obtained from patients with temporal lobe epilepsy. Epilepsia. 2000;41:S181–4. doi: 10.1111/j.1528-1157.2000.tb01578.x. [DOI] [PubMed] [Google Scholar]
  • 54.Higashi K, Fujita A, Inanobe A, Tanemoto M, Doi K, Kubo T, Kurachi Y. An inwardly rectifying K+ channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am J Physiol Cell Physiol. 2001;281:C922–31. doi: 10.1152/ajpcell.2001.281.3.C922. [DOI] [PubMed] [Google Scholar]
  • 55.Li L, Head V, Timpe LC. Identification of an inward rectifier potassium channel gene expressed in mouse cortical astrocytes. Glia. 2001;33:57–71. doi: 10.1002/1098-1136(20010101)33:1<57::aid-glia1006>3.0.co;2-0. [DOI] [PubMed] [Google Scholar]
  • 56.Kofuji P, Biedermann B, Siddharthan V, Raap M, Iandiev I, Milenkovic I, Thomzig A, Veh RW, Bringmann A, Reichenbach A. Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering. Glia. 2002;39:292–303. doi: 10.1002/glia.10112. [DOI] [PubMed] [Google Scholar]
  • 57.Shroder W, Seifert G, Huttmann K, Hinterkeuser S, Steinhauser C. AMPA receptor-mediated modulation of inward rectifier K+ channels in astrocytes of mouse hippocampus. Mol Cell Neurosci. 2002;19:447–58. doi: 10.1006/mcne.2001.1080. [DOI] [PubMed] [Google Scholar]
  • 58.Ishii M, Fujita A, Iwai K, Kusaka S, Higashi K, Inanobe A, Hibino H, Kurachi Y. Differential expression and distribution of Kir5.1 and Kir4.1 inwardly rectifying K+ channels in retina. Am J Physiol Cell Physiol. 2003;285:C260–7. doi: 10.1152/ajpcell.00560.2002. [DOI] [PubMed] [Google Scholar]
  • 59.Hibino H, Fujita A, Iwai K, Yamada M, Kurachi Y. Differential assembly of inwardly rectifying K+ channel subunits, Kir4.1 and Kir5.1, in brain astrocytes. J Biol Chem. 2004;279:44065–73. doi: 10.1074/jbc.M405985200. [DOI] [PubMed] [Google Scholar]
  • 60.Kalsi AS, Greenwood K, Wilkin G, Butt AM. Kir4.1 expression by astrocytes and oligodendrocytes in CNS white matter: a developmental study in the rat optic nerve. J Anat. 2004;204:475–85. doi: 10.1111/j.0021-8782.2004.00288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Butt AM, Greenwood K, Bolton S. Evidence of a role for Kir4.1 on setting the resting membrane potential of opticnerve glia. J Anat. 2005;206:493. [Google Scholar]
  • 62.Greenwood K, Bolton S, Butt AM. Evidence of a role for the inwardly rectifying potassium channel (Kir) 4.1 in oligodendrocyte development. J. Anat. 2005;206:493. [Google Scholar]
  • 63.Raap M, Biedermann B, Braun P, Milenkovic I, Skatchkov SN, Bringmann A, Reichenbach A. Diversity of Kir channel subunit mRNA expressed by retinal glial cells of the guinea-pig. Neuroreport. 2002;13:1037–40. doi: 10.1097/00001756-200206120-00012. [DOI] [PubMed] [Google Scholar]
  • 64.Leonoudakis D, Mailliard W, Wingerd K, Clegg D, van de Nberg C. Inward rectifier potassium channel Kir2.2 is associated with synapse-associated protein SAP97. J Cell Sci. 2001;114:987–98. doi: 10.1242/jcs.114.5.987. [DOI] [PubMed] [Google Scholar]
  • 65.Stonehouse AH, Pringle JH, Norman RI, Stanfield PR, Conley EC, Brammar WJ. Characterisation of Kir2.0 proteins in the rat cerebellum and hippocampus by polyclonal antibodies. Histochem Cell Biol. 1999;112:457–65. doi: 10.1007/s004180050429. [DOI] [PubMed] [Google Scholar]
  • 66.Perillan PR, Li X, Potts EA, Chen M, Bredt DS, Simard JM. Inward rectifier K(+) channel Kir2.3 (IRK3) in reactive astrocytes from adult rat brain. Glia. 2000;31:181–92. doi: 10.1002/1098-1136(200008)31:2<181::aid-glia90>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  • 67.Olesen ML, Sontheimer H. Mislocalization of Kir channels in malignant glia. Glia. 2004;46:63–73. doi: 10.1002/glia.10346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Skatchkov SN, Thomizig A, Eaton M, Biedermann B, Eulitz D, Bringmann A, Pannicke T, Veh RW, Reichenbach A. Kir subfamily in frog retina: specific spatial distribution of Kir6.1 in glial (Muller) cells. Neuroreport. 2001;12:1437–41. doi: 10.1097/00001756-200105250-00028. [DOI] [PubMed] [Google Scholar]
  • 69.Skatchkov SN, Rojas L, Eaton MJ, Orkand RK, Biedermann B, Bringmann A, Pannicke T, Veh RW, Reichenbach A. Functional expression of Kir 6.1/SUR1-K(ATP) channels in frog retinal Muller glial cells. Glia. 2002;38:256–67. doi: 10.1002/glia.10073. [DOI] [PubMed] [Google Scholar]
  • 70.Eaton MJ, Skatchkov SN, Brune A, Biedermann R, Veh RW, Reichenbach A. SUR1 and Kir6.1 sbunits of KATP-channels are co-localised in retinal glial (Muller) cells. Neuroreport. 2002;13:57–60. doi: 10.1097/00001756-200201210-00016. [DOI] [PubMed] [Google Scholar]
  • 71.Karchin A, Brockhaus J, Ballanyi K. KATP channel formation by the sulfonylurea receptor SURl with Kir6.2 subunits in rat dorsal vagal neurons. J Physiol. 1998;509:339–46. doi: 10.1111/j.1469-7793.1998.339bn.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Zhou M, Tanaka O, Suzki M, Sekigchi M, Takata K, Kawahara K, Abe H. Localization of pore-forming subunit of the ATP-sensitive K(+)-channel, Kir6.2, in rat brain neurons and glial cells. Brain Res. Mol. Brain Res. 2002;101:23–32. doi: 10.1016/s0169-328x(02)00137-7. [DOI] [PubMed] [Google Scholar]
  • 73.Dunn-Meynell AA, Rawson NE, Levin BE. Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res. 1998;814:41–54. doi: 10.1016/s0006-8993(98)00956-1. [DOI] [PubMed] [Google Scholar]
  • 74.Thomzig A, Wenzel M, Karschin C, Eaton MJ, Skatchkov SN, Karschin A, Veh RW. Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels. Mol Cell Neurosci. 2001;18:671–90. doi: 10.1006/mcne.2001.1048. [DOI] [PubMed] [Google Scholar]
  • 75.Zawar C, Plant TD, Schirra C, Konnerth A, Neurmcke B. Cell-type specific expression of ATP-sensitive potassim channels in the rat hippocampus. J Physiol. 1999;514:327–41. doi: 10.1111/j.1469-7793.1999.315ae.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Brockhaus J, de Itmer J. Developmental downregulation of ATP-sensitive potassium conductance in astrocytes in sity. Glia. 2000;32:205–13. doi: 10.1002/1098-1136(200012)32:3<205::aid-glia10>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  • 77.Roy ML, Sontheimer H. Beta-adrenergic modulation of glial inwardly rectifying potassium channels. J Neurochem. 1995;64:1576–84. doi: 10.1046/j.1471-4159.1995.64041576.x. [DOI] [PubMed] [Google Scholar]
  • 78.Britz F, Hirth IC, Schneider H-P, de Itmer J. 5-hydroxytryptamine activates a barium-sensitive, cAMP-mediated potassium conductance in the leech giant glial cell. Glia. 2005;49:309–17. doi: 10.1002/glia.20120. [DOI] [PubMed] [Google Scholar]
  • 79.Karschin A, Wischmeyer E, Davidson N, Lester HA. Fast inhibition of inwardly rectifying K+ channels by multiple neurotransmitter receptors in oligodendroglia. Eur J Neurosci. 1994;6:1756–64. doi: 10.1111/j.1460-9568.1994.tb00568.x. [DOI] [PubMed] [Google Scholar]
  • 80.Karschin A, Wischmeyer E. Identification of G proteinregulated inwardly rectifying K+ channels in rat brain oligodendrocytes. Neurosci Lett. 1995;183:135–8. doi: 10.1016/0304-3940(94)11133-4. [DOI] [PubMed] [Google Scholar]
  • 81.Skatchkov SN, Eaton MJ, Shuba YM, Kucheryvykh YV, de Rst C, Veh RW, Wurm A, Iandiev I, Pannice T, Bringmann A, Reichenbach A. 2005. Tandem-pore domain potassium channels are functionally expressed in retinal (Muller) glial cells Glia ; in press. [DOI] [PubMed]
  • 82.Eaton MJ, Veh RW, Makarov F, Shuba YM, Reichenbach A, Skatchkov SN. Tandem-pore K(+) channels display an uneven distribution in amphibian retina. Neurorport. 2004;15:321–4. doi: 10.1097/00001756-200402090-00022. [DOI] [PubMed] [Google Scholar]
  • 83.Gnatenco C, Han J, Snyder AK, Kim D. Functional expression of TREK-2 K+ channel in cltured rat brain astrocytes. Brain Res. 2002;931:56–67. doi: 10.1016/s0006-8993(02)02261-8. [DOI] [PubMed] [Google Scholar]
  • 84.Ferroni S, Valente P, Caprini M, Nobile M, Schubert P, Rapisarda C. Arachidonic acid activates an open rectifier potassium channel in cultred rat cortical astrocytes. J. Neurosci Res. 2003;72:363–72. doi: 10.1002/jnr.10580. [DOI] [PubMed] [Google Scholar]
  • 85.Rusznak Z, Pocsai K, Kovacs I, Por A, Pal B, Biro T, Szucs G. Differential distribution of TASK-1, TASK-2 and TASK-3 immunoreactivities in the rat and human cerebellum. Cell Mol Life Sci. 2004;61:1532–42. doi: 10.1007/s00018-004-4082-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.D'Ambrosio R, Gordon DS, Winn HR. Differential role of KIR channel and Na+/K+-pump in the regulation of extracellular K+ in rat hippocampus. J Neurophysiol. 2002;87:87–102. doi: 10.1152/jn.00240.2001. [DOI] [PubMed] [Google Scholar]
  • 87.Connors BW, Ransom BR, Kunis DM, Gutnick MJ. Activity-dependent K+ accumulation in the developing rat optic nerve. Science. 1982;216:1341–3. doi: 10.1126/science.7079771. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES