Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 Mar 15;10(1):76–99. doi: 10.1111/j.1582-4934.2006.tb00292.x

Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-β as major players and therapeutic targets

A M Gressner 1,*, R Weiskirchen 1,*
PMCID: PMC3933103  PMID: 16563223

Abstract

Hepatic fibrosis is a scarring process that is associated with an increased and altered deposition of extracellular matrix in liver. At the cellular and molecular level, this progressive process is mainly characterized by cellular activation of hepatic stellate cells and aberrant activity of transforming growth factor-β1 and its downstream cellular mediators. Although the cellular responses to this cytokine are complex, the signalling pathways of this pivotal cytokine during the fibrogenic response and its connection to other signal cascades are now understood in some detail. Based on the current advances in understanding the pleiotropic reactions during fibrogenesis, various inhibitors of transforming growth factor-β were developed and are now being investigated as potential drug candidates in experimental models of hepatic injury. Although it is too early to favour one of these antagonists for the treatment of hepatic fibrogenesis in human, the experimental results obtained yet provide stimulatory impulses for the development of an effective treatment of choice in the not too distant future. The present review summarises the actual knowledge on the pathogenesis of hepatic fibrogenesis, the role of transforming growth factor-β and its signalling pathways in promoting the fibrogenic response, and the therapeutic modalities that are presently in the spotlight of many investigations and are already on the way to take the plunge into clinical studies.

Keywords: liver fibrosis, hepatic stellate cells, antifibrotic therapy, transforming growth factor- β, Smad, endoglin, betaglycan, extracellular matrix, signal transduction, α-smooth muscle actin, collagen

References

  • 1.Anthony PP, Ishak KG, Nayak NC, Poulsen HE, Scheuer PJ, Sobin LH. The morphology of cirrhosis. Recommendations on definition, nomenclature, and classification by a working group sponsored by the World Health Organization. J Clin Pathol. 1978;31:395–414. doi: 10.1136/jcp.31.5.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Hartroft WS, Ridout JH. Pathogenesis of the cirrhosis produced by choline deficiency; escape of lipid from fatty hepatic cysts into the biliary and vascular systems. Am J Pathol. 1951;27:951–89. [PMC free article] [PubMed] [Google Scholar]
  • 3.Pinzani M, Rombouts K. Liver fibrosis: from the bench to clinical targets. Dig Liver Dis. 2004;36:231–42. doi: 10.1016/j.dld.2004.01.003. [DOI] [PubMed] [Google Scholar]
  • 4.Pinzani M. Liver fibrosis. Springer Semin Immunopathol. 1999;21:475–90. doi: 10.1007/s002810000037. [DOI] [PubMed] [Google Scholar]
  • 5.Olaso E, Friedman SL. Molecular regulation of hepatic fibrogenesis. J Hepatol. 1998;29:836–47. doi: 10.1016/s0168-8278(98)80269-9. [DOI] [PubMed] [Google Scholar]
  • 6.Friedman SL. Liver fibrosis - from bench to bedside. J Hepatol. 2003;38:S38–53. doi: 10.1016/s0168-8278(02)00429-4. [DOI] [PubMed] [Google Scholar]
  • 7.Bataller R, Brenner DA. Hepatic stellate cells as a target for the treatment of liver fibrosis. Semin Liver Dis. 2001;21:437–51. doi: 10.1055/s-2001-17558. [DOI] [PubMed] [Google Scholar]
  • 8.Friedman SL. Mechanisms of disease: Mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol. 2004;1:98–105. doi: 10.1038/ncpgasthep0055. [DOI] [PubMed] [Google Scholar]
  • 9.Horn T, Junge J, Christoffersen P. Early alcoholic liver injury. Activation of lipocytes in acinar zone 3 and correlation to degree of collagen formation in the Disse space. J Hepatol. 1986;3:333–40. doi: 10.1016/s0168-8278(86)80486-x. [DOI] [PubMed] [Google Scholar]
  • 10.Schaffner F, Popper H. Capillarization of hepatic sinusoids in man. Gastroenterology. 1963;44:239–42. [PubMed] [Google Scholar]
  • 11.Dubuisson L, Boussarie L, Bedin CA, Balabaud C, Bioulac-Sage P. Transformation of sinusoids into capillaries in a rat model of selenium-induced nodular regenerative hyperplasia: an immunolight and immunoelectron microscopic study. Hepatology. 1995;21:805–14. [PubMed] [Google Scholar]
  • 12.Aterman K. The parasinusoidal cells of the liver: a historical account. Histochem J. 1986;18:279–305. doi: 10.1007/BF01675207. [DOI] [PubMed] [Google Scholar]
  • 13.Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–18. doi: 10.1172/JCI24282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Gressner AM. Perisinusoidal lipocytes and fibrogenesis. Gut. 1994;35:1331–3. doi: 10.1136/gut.35.10.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.de Leeuw AM, McCarthy SP, Geerts A, Knook DL. Purified rat liver fat-storing cells in culture divide and contain collagen. Hepatology. 1984;4:392–403. doi: 10.1002/hep.1840040307. [DOI] [PubMed] [Google Scholar]
  • 16.Friedman SL, Roll FJ. Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with Stractan. Anal Biochem. 1987;161:207–18. doi: 10.1016/0003-2697(87)90673-7. [DOI] [PubMed] [Google Scholar]
  • 17.Friedman SL, Rockey DC, McGuire RF, Maher JJ, Boyles JK, Yamasaki G. Isolated hepatic lipocytes and Kupffer cells from normal human liver: morphological and functional characteristics in primary culture. Hepatology. 1992;15:234–43. doi: 10.1002/hep.1840150211. [DOI] [PubMed] [Google Scholar]
  • 18.Cassiman D, Roskams T. Beauty is in the eye of the beholder: emerging concepts and pitfalls in hepatic stellate cell research. J Hepatol. 2002;37:527–35. doi: 10.1016/s0168-8278(02)00263-5. [DOI] [PubMed] [Google Scholar]
  • 19.Reeves HL, Friedman SL. Activation of hepatic stellate cells - a key issue in liver fibrosis. Front Biosci. 2002;7:d808–26. doi: 10.2741/reeves. [DOI] [PubMed] [Google Scholar]
  • 20.Rockey DC. Hepatic blood flow regulation by stellate cells in normal and injured liver. Semin Liver Dis. 2001;21:337–49. doi: 10.1055/s-2001-17551. [DOI] [PubMed] [Google Scholar]
  • 21.Rockey D. The cellular pathogenesis of portal hypertension: stellate cell contractility, endothelin, and nitric oxide. Hepatology. 1997;25:2–5. doi: 10.1053/jhep.1997.v25.ajhep0250002. [DOI] [PubMed] [Google Scholar]
  • 22.Bachem MG, Meyer D, Melchior R, Sell KM, Gressner AM. Activation of rat liver perisinusoidal lipocytes by transforming growth factors derived from myofibroblastlike cells. A potential mechanism of self perpetuation in liver fibrogenesis. J Clin Invest. 1992;89:19–27. doi: 10.1172/JCI115561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-β in hepatic fibrosis. Front Biosci. 2002;7:d793–807. doi: 10.2741/A812. [DOI] [PubMed] [Google Scholar]
  • 24.Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004;15:255–73. doi: 10.1016/j.cytogfr.2004.03.006. [DOI] [PubMed] [Google Scholar]
  • 25.Campbell JS, Hughes SD, Gilbertson DG, Palmer TE, Holdren MS, Haran AC, Odell MM, Bauer RL, Ren HP, Haugen HS, Yeh MM, Fausto N. Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci USA. 2005;102:3389–94. doi: 10.1073/pnas.0409722102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Poli G. Pathogenesis of liver fibrosis: role of oxidative stress. Mol Aspects Med. 2000;21:49–98. doi: 10.1016/s0098-2997(00)00004-2. [DOI] [PubMed] [Google Scholar]
  • 27.Parola M, Robino G. Oxidative stress-related molecules and liver fibrosis. J Hepatol. 2001;35:297–306. doi: 10.1016/s0168-8278(01)00142-8. [DOI] [PubMed] [Google Scholar]
  • 28.Garcia-Trevijano ER, Iraburu MJ, Fontana L, Dominguez-Rosales JA, Auster A, Covarrubias Pinedo A, Rojkind M. Transforming growth factor β1 induces the expression of α1(I) procollagen mRNA by a hydrogen peroxide-C/EBPβ-dependent mechanism in rat hepatic stellate cells. Hepatology. 1999;29:960–70. doi: 10.1002/hep.510290346. [DOI] [PubMed] [Google Scholar]
  • 29.Casini A, Galli G, Salzano R, Ceni E, Franceschelli F, Rotella CM, Surrenti C. Acetaldehyde induces c-fos and c-jun proto-oncogenes in fat-storing cell cultures through protein kinase C activation. Alcohol Alcohol. 1994;29:303–14. [PubMed] [Google Scholar]
  • 30.Greenwel P, Dominguez-Rosales JA, Mavi G, Rivas Estilla AM, Rojkind M. Hydrogen peroxide: a link between acetaldehyde-elicited α1(I) collagen gene up regulation and oxidative stress in mouse hepatic stellate cells. Hepatology. 2000;31:109–16. doi: 10.1002/hep.510310118. [DOI] [PubMed] [Google Scholar]
  • 31.Ikeda H, Yatomi Y, Yanase M, Satoh H, Maekawa H, Ogata I, Ozaki Y, Takuwa Y, Mochida S, Fujiwara K. Biological activities of novel lipid mediator sphingosine 1-phosphate in rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol. 2000;279:G304–10. doi: 10.1152/ajpgi.2000.279.2.G304. [DOI] [PubMed] [Google Scholar]
  • 32.Magness ST, Bataller R, Yang L, Brenner DA. A dual reporter gene transgenic mouse demonstrates heterogeneity in hepatic fibrogenic cell populations. Hepatology. 2004;40:1151–9. doi: 10.1002/hep.20427. [DOI] [PubMed] [Google Scholar]
  • 33.Knittel T, Kobold D, Saile B, Grundmann A, Neubauer K, Piscaglia F, Ramadori G. Rat liver myofibroblasts and hepatic stellate cells: different cell populations of the fibroblast lineage with fibrogenic potential. Gastoenterology. 1999;117:1205–21. doi: 10.1016/s0016-5085(99)70407-5. [DOI] [PubMed] [Google Scholar]
  • 34.Forbes SJ, Russo FP, Rey V, Burra P, Rugge M, Wright NA, Alison MR. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology. 2004;126:955–63. doi: 10.1053/j.gastro.2004.02.025. [DOI] [PubMed] [Google Scholar]
  • 35.Ishii G, Sangai T, Sugiyama K, Ito T, Hasebe T, Endoh Y, Magae J, Ochiai A. In vivo characterization of bone marrow-derived fibroblasts recruited into fibrotic lesions. Stem Cells. 2005;23:699–706. doi: 10.1634/stemcells.2004-0183. [DOI] [PubMed] [Google Scholar]
  • 36.Zavadil J, Bottinger EP. TGF-β and epithelial-to-mesenchymal transitions. Oncogene. 2005;24:5764–74. doi: 10.1038/sj.onc.1208927. [DOI] [PubMed] [Google Scholar]
  • 37.Ward C, Robertson H, Forrest IA, Lordan J, Murphy D, Dark JH, Corris PA, Jones DE, Kirby JA. Hypothesis: epithelial-to-mesenchymal transition is a common cause of chronic allograft failure. Transplant Proc. 2005;37:977–80. doi: 10.1016/j.transproceed.2004.12.203. [DOI] [PubMed] [Google Scholar]
  • 38.Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 2005;16:251–63. doi: 10.1016/j.cytogfr.2005.01.009. [DOI] [PubMed] [Google Scholar]
  • 39.Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem. 2000;275:2247–50. doi: 10.1074/jbc.275.4.2247. [DOI] [PubMed] [Google Scholar]
  • 40.Sanderson N, Factor V, Nagy P, Kopp J, Kondaiah P, Wakefield L, Roberts AB, Sporn MB, Thorgeirsson SS. Hepatic expression of mature transforming growth factor β 1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci USA. 1995;92:2572–6. doi: 10.1073/pnas.92.7.2572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Ueberham E, Low R, Ueberham U, Schonig K, Bujard H, Gebhardt R. Conditional tetracycline-regulated expression of TGF-β1 in liver of transgenic mice leads to reversible intermediary fibrosis. Hepatology. 2003;37:1067–78. doi: 10.1053/jhep.2003.50196. [DOI] [PubMed] [Google Scholar]
  • 42.George J, Roulot D, Koteliansky VE, Bissell DM. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor β type II receptor: A potential new therapy for hepatic fibrosis. Proc Natl Acad Sci USA. 1999;96:12719–24. doi: 10.1073/pnas.96.22.12719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Qi Z, Atsuchi N, Ooshima A, Takeshita A, Ueno H. Blockade of type beta transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat. Proc Natl Acad Sci USA. 1999;96:2345–9. doi: 10.1073/pnas.96.5.2345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Nakamura T, Sakata R, Ueno T, Sata M, Ueno H. Inhibition of transforming growth factor β prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine-treated rats. Hepatology. 2000;32:247–55. doi: 10.1053/jhep.2000.9109. [DOI] [PubMed] [Google Scholar]
  • 45.Arias M, Sauer-Lehnen S, Treptau J, Janoschek N, Theuerkauf I, Buettner R, Gressner AM, Weiskirchen R. Adenoviral expression of a transforming growth factor-β1 antisense mRNA is effective in preventing liver fibrosis in bile-duct ligated rats. BMC Gastroenterology. 2003;3:29. doi: 10.1186/1471-230X-3-29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Feng XH, de Rynck R. Specificity and versatility in TGF-β signalling through Smads. Annu Rev Cell Dev Biol. 2005;21:659–93. doi: 10.1146/annurev.cellbio.21.022404.142018. [DOI] [PubMed] [Google Scholar]
  • 47.Lebrin F, de Ckers M, Bertolino P, van Dijke P. TGF-β receptor function in the endothelium. Cardiovasc Res. 2005;65:599–608. doi: 10.1016/j.cardiores.2004.10.036. [DOI] [PubMed] [Google Scholar]
  • 48.Wang XF, Lin HY, Ng-Easton E, Downward J, Lodish HF, Weinberg RA. Expression cloning and characterization of the TGF-β type III receptor. Cell. 1991;67:797–805. doi: 10.1016/0092-8674(91)90074-9. [DOI] [PubMed] [Google Scholar]
  • 49.Cheifetz S, Bellon T, Cales C, Veras S, Bernabeu C, Massagué J, Letarte M. Endoglin is a component of the transforming growth factor-β redeptor system in human endothelial cells. J Biol Chem. 1992;267:19027–30. [PubMed] [Google Scholar]
  • 50.Lopez-Casillas F, Wrana JL, Massagué J. Betaglycan presents ligand to the TGF-β signaling receptor. Cell. 1993;73:1435–44. doi: 10.1016/0092-8674(93)90368-z. [DOI] [PubMed] [Google Scholar]
  • 51.Friedman SL, Yamasaki G, Wong L. Modulation of transforming growth factor β receptors of rat lipocytes during the hepatic wound healing response. Enhanced binding and reduced gene expression accompany cellular activation in culture and in vivo. J Biol Chem. 1994;269:10551–8. [PubMed] [Google Scholar]
  • 52.Meurer SK, Tihaa L, Lahme B, Gressner AM, Weiskirchen R. Identification of endoglin in rat hepatic stellate cells: new insights into transforming growth factor β receptor signaling. J Biol Chem. 2005;280:3078–87. doi: 10.1074/jbc.M405411200. [DOI] [PubMed] [Google Scholar]
  • 53.Liu C, Gaca MD, Swenson ES, Vellucci VF, Reiss M, Wells RG. Smads 2 and 3 are differentially activated by transforming growth factor-β (TGF-β) in quiescent and activated hepatic stellate cells. Constitutive nuclear localization of Smads in activated cells is TGF-β-independent. J Biol Chem. 2003;278:11721–8. doi: 10.1074/jbc.M207728200. [DOI] [PubMed] [Google Scholar]
  • 54.Dooley S, de Lvoux B, Lahme B, Mangasser-Stephan K, Gressner AM. Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology. 2000;31:1094–106. doi: 10.1053/he.2000.6126. [DOI] [PubMed] [Google Scholar]
  • 55.Uemura M, Swenson ES, Gaça MDA, Giordano FJ, Reiss M, Wells RG. Smad2 and Smad3 play different roles in rat hepatic stellate cell function and α-smooth muscle actin organization. Mol Biol Cell. 2005;16:4214–24. doi: 10.1091/mbc.E05-02-0149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Schnabl B, Kweon YO, Frederick JP, Wang XF, Rippe RA, Brenner DA. The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology. 2001;34:89–100. doi: 10.1053/jhep.2001.25349. [DOI] [PubMed] [Google Scholar]
  • 57.Flanders KC. Smad3 as a mediator of the fibrotic response. In J Exp Pathol. 2004;85:47–64. doi: 10.1111/j.0959-9673.2004.00377.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Stopa M, Anhuf D, Terstegen L, Gatsios P, Gressner AM, Dooley S. Participation of Smad2, and Smad3, and Smad4 in transforming growth factor β (TGF-β)-induced activation of Smad7. The TGF-β response element of the promoter requires functional Smad binding element and E-box sequences for transcriptional regulation. J Biol Chem. 2000;275:29308–17. doi: 10.1074/jbc.M003282200. [DOI] [PubMed] [Google Scholar]
  • 59.Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, van Dijke P, Gressner AM. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology. 2003;125:178–91. doi: 10.1016/s0016-5085(03)00666-8. [DOI] [PubMed] [Google Scholar]
  • 60.Arias M, Lahme B, Van de Leur E, Gressner AM, Weiskirchen R. Adenoviral delivery of an antisense RNA complementary to the 3′ coding sequence of transforming growth factor-β1 inhibits fibrogenic activities of hepatic stellate cells. Cell Growth Differ. 2002;13:265–73. [PubMed] [Google Scholar]
  • 61.Morrissey J, Hruska K, Guo G, Wang S, Chen Q, Klahr S. Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J Am Soc Nephrol. 2002;13:S14–21. [PubMed] [Google Scholar]
  • 62.Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R. BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 2003;9:964–8. doi: 10.1038/nm888. [DOI] [PubMed] [Google Scholar]
  • 63.Pinzani M. PDGF and signal transduction in hepatic stellate cells. Front Biosci. 2002;7:D1720–6. doi: 10.2741/A875. [DOI] [PubMed] [Google Scholar]
  • 64.Oefner C, D'Arcy A, Winkler FK, Eggimann B, Hosang M. Crystal structure of human platelet-derived growth factor BB. EMBO J. 1992;11:3921–6. doi: 10.1002/j.1460-2075.1992.tb05485.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Kordes C, Brookmann S, Haussinger D, Klonowski Stumpe H. Differential and synergistic effects of platelet-derived growth factor-BB and transforming growth factor-β1 on activated pancreatic stellate cells. Pancreas. 2005;31:156–67. doi: 10.1097/01.mpa.0000168222.05591.a0. [DOI] [PubMed] [Google Scholar]
  • 66.Yoshida K, Matsuzaki K, Mori S, Tahashi Y, Yamagata H, Furukawa F, Seki T, Nishizawa M, Fujisawa J, Okazaki K. Transforming growth factor-β and platelet-derived growth factor signal via c-Jun-N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Am J Pathol. 2005;166:1029–39. doi: 10.1016/s0002-9440(10)62324-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Yang C, Zeisberg M, Mosterman B, Sudhakar A, Yerramalla U, Holthaus K, Xu L, Eng F, Afdhal N, Kalluri R. Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Gastroenterology. 2003;124:147–59. doi: 10.1053/gast.2003.50012. [DOI] [PubMed] [Google Scholar]
  • 68.Fibbi G, Pucci M, D'Alessio S, Grappone C, Pellegrini G, Salzano R, Casini A, Milani S, del Rosso M. Transforming growth factor-β1 stimulates invasivity of hepatic stellate cells by engagement of the cell-associated fibrinolytic system. Growth Factors. 2001;19:87–100. doi: 10.3109/08977190109001078. [DOI] [PubMed] [Google Scholar]
  • 69.Davis BH, Rapp UR, Davidson NO. Retinoic acid and transforming growth factor β differentially inhibit platelet-derived-growth-factor-induced Ito-cell activation. Biochem J. 1991;278:43–7. doi: 10.1042/bj2780043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Hendriks HF, Verhoofstad WA, Brouwer A, de Leeuw AM, Knook DL. Perisinusoidal fat-storing cells are the main vitamin A storage sites in rat liver. Exp Cell Res. 1985;160:138–49. doi: 10.1016/0014-4827(85)90243-5. [DOI] [PubMed] [Google Scholar]
  • 71.Senoo H. Structure and function of hepatic stellate cells. Med Electron Microsc. 2004;37:3–15. doi: 10.1007/s00795-003-0230-3. [DOI] [PubMed] [Google Scholar]
  • 72.Blaner WS, Hendriks HF, Brouwer A, de Leeuw AM, Knook DL, Goodman DS. Retinoids, retinoid-binding proteins, and retinyl palmitate hydrolase distributions in different types of rat liver cells. J Lipid Res. 1985;26:1241–51. [PubMed] [Google Scholar]
  • 73.Housset C, Rockey DC, Bissell DM. Endothelin receptors in rat liver: lipocytes as a contractile target for endothelin-1. Proc Natl Acad Sci USA. 1993;90:9266–70. doi: 10.1073/pnas.90.20.9266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Kawada N, Tran-Thi TA, Klein H, de Cker T. The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances. Possible involvement of endothelin 1 and nitric oxide in the regulation of the sinusoidal tonus. Eur J Biochem. 1993;213:815–23. doi: 10.1111/j.1432-1033.1993.tb17824.x. [DOI] [PubMed] [Google Scholar]
  • 75.Sakamoto M, Ueno T, Kin M, Ohira H, Torimura T, Inuzuka S, Sata M, Tanikawa K. Ito cell contraction in response to endothelin-1 and substance P. Hepatology. 1993;18:978–83. doi: 10.1002/hep.1840180432. [DOI] [PubMed] [Google Scholar]
  • 76.Clemens MG, Zhang JX. Regulation of sinusoidal perfusion: in vivo methodology and control by endothelins. Semin Liver Dis. 1999;19:383–96. doi: 10.1055/s-2007-1007127. [DOI] [PubMed] [Google Scholar]
  • 77.Rieder H, Ramadori G, Meyer zum Buschenfelde KH. Sinusoidal endothelial liver cells in vitro release endothelin- augmentation by transforming growth factor β and Kupffer cell-conditioned media. Klin Wochenschr. 1991;69:387–91. doi: 10.1007/BF01647411. [DOI] [PubMed] [Google Scholar]
  • 78.Kmiec Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol. 2001;161:1–151. doi: 10.1007/978-3-642-56553-3. [DOI] [PubMed] [Google Scholar]
  • 79.Eckardt KU, Pugh CW, Meier M, Tan CC, Ratcliffe PJ, Kurtz A. Production of erythropoietin by liver cells in vivo and in vitro. Ann NY Acad Sci. 1994;718:50–60. doi: 10.1111/j.1749-6632.1994.tb55703.x. [DOI] [PubMed] [Google Scholar]
  • 80.Leyland H, Gentry J, Arthur MJ, Benyon RC. The plasminogen-activating system in hepatic stellate cells. Hepatology. 1996;24:1172–8. doi: 10.1002/hep.510240532. [DOI] [PubMed] [Google Scholar]
  • 81.Vinas O, Bataller R, Sancho-Bru P, Gines P, Berenguer C, Enrich C, Nicolas JM, Ercilla G, Gallart T, Vives J, Arroyo V, Rodés J. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology. 2003;38:919–29. doi: 10.1053/jhep.2003.50392. [DOI] [PubMed] [Google Scholar]
  • 82.Chen W, Jeandidier E, Gendrault JL, Steffan AM, Kirn A. Characterization and main properties of cultured fat-storing cells from human and mouse livers. Their characterization with viruses. In: de Cker K, editor; Wisse E, Knook DL, editors. Cells of the hepatic sinusoid. Volume 2. The Kupffer Cell Foundation; 1988. pp. 429–33. Leiden, The Netherlands; . [Google Scholar]
  • 83.Bandapalli OR, Geheeb M, Kobelt D, Kühnle K, Elezkurtaj S, Herrmann J, Gressner AM, Weiskirchen R, Beule D, Blüthgen N, Herzel H, Franke C, Brand K. Global analysis of host tissue gene expression in the invasive front of colorectal liver metastases. Int J Cancer. 2006;118:74–89. doi: 10.1002/ijc.21307. [DOI] [PubMed] [Google Scholar]
  • 84.Ballardini G, Groff P, Badiali de Giorni L, Schuppan D, Bianchi FB. Ito cell heterogeneity: desmin-negative Ito cells in normal rat liver. Hepatology. 1994;19:440–6. [PubMed] [Google Scholar]
  • 85.Ramm GA, Britton RS, O'Neill R, Blaner WS, Bacon BR. Vitamin A-poor lipocystes: a novel desminnegative lipocyte subpopulation, which can be activated to myofibroblasts. Am J Physiol. 1995;269:G532–41. doi: 10.1152/ajpgi.1995.269.4.G532. [DOI] [PubMed] [Google Scholar]
  • 86.Greenwel P, Rubin J, Schwartz M, Hertzberg EL, Rojkind M. Liver fat-storing cell clones obtained from a CC14-cirrhotic rat are heterogeneous with regard to proliferation, expression of extracellular matrix components, interleukin-6, and connexin 43. Lab Invest. 1993;69:210–6. [PubMed] [Google Scholar]
  • 87.Knittel T, Kobold D, Piscaglia F, Saile B, Neubauer K, Mehde M, Timpl R, Ramadori G. Localization of liver myofibroblasts and hepatic stellate cells in normal and diseased rat livers: distinct roles of (myo-)fibroblast subpopulations in hepatic tissue repair. Histochem Cell Biol. 1999;112:387–401. doi: 10.1007/s004180050421. [DOI] [PubMed] [Google Scholar]
  • 88.Saile B, Matthes N, Knittel T, Ramadori G. Transforming growth factor β and tumor necrosis factor α inhibit both apoptosis and proliferation of activated rat hepatic stellate cells. Hepatology. 1999;30:196–202. doi: 10.1002/hep.510300144. [DOI] [PubMed] [Google Scholar]
  • 89.Issa R, Williams E, Trim N, Kendall T, Arthur MJ, Reichen J, Benyon RC, Iredale JP. Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut. 2001;48:548–57. doi: 10.1136/gut.48.4.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.de Caestecker MP, Piek E, Roberts AB. Role of transforming growth factor-β signaling in cancer. J Natl Cancer Inst. 2000;92:1388–402. doi: 10.1093/jnci/92.17.1388. [DOI] [PubMed] [Google Scholar]
  • 91.Akhurst RJ, de Rynck R. TGF-â signaling in cancer: a double-edged sword. Trends Cell Biol. 2001;11:S44–51. doi: 10.1016/s0962-8924(01)02130-4. [DOI] [PubMed] [Google Scholar]
  • 92.de Rynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–29. doi: 10.1038/ng1001-117. [DOI] [PubMed] [Google Scholar]
  • 93.Tang B, Bottinger EP, Jakowlew SB, Bagnall KM, Mariano J, Anver MR, Letterio JJ, Wakefield LM. Transforming growth factor-β1 is a new form of tumor suppressor with true haploid insufficiency. Nat Med. 1998;4:802–7. doi: 10.1038/nm0798-802. [DOI] [PubMed] [Google Scholar]
  • 94.Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J, Patel SC, Khozin S, Liu ZY, Green J, Anver MR, Merlino G, Wakefield LM. Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J Clin Invest. 2002;109:1607–15. doi: 10.1172/JCI15333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Gressner AM. Liver fibrosis: perspectives in pathobiochemical research and clinical outlook. Eur J Clin Chem Clin Biochem. 1991;29:293–311. [PubMed] [Google Scholar]
  • 96.Pinzani M, Rombouts K, Colagrande S. Fibrosis in chronic liver diseases: diagnosis and managment. J Hepatol. 2005;42:S22–36. doi: 10.1016/j.jhep.2004.12.008. [DOI] [PubMed] [Google Scholar]
  • 97.Rockey DC. Antifibrotic therapy in chronic liver disease. Clin Gastroenterol Hepatol. 2005;3:95–107. doi: 10.1016/s1542-3565(04)00445-8. [DOI] [PubMed] [Google Scholar]
  • 98.Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, Hovell C, Arthur MJ. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest. 1998;102:538–49. doi: 10.1172/JCI1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.de Smet VJ, Roskams T. Cirrhosis reversal: a duel between dogma and myth. J Hepatol. 2004;40:860–7. doi: 10.1016/j.jhep.2004.03.007. [DOI] [PubMed] [Google Scholar]
  • 100.Hammel P, Couvelard A, O'Toole D, Ratouis A, Sauvanet A, Flejou JF, de Gott C, Belghiti J, Bernades P, Valla D, Ruszniewski P, Levy P. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med. 2001;344:418–23. doi: 10.1056/NEJM200102083440604. [DOI] [PubMed] [Google Scholar]
  • 101.Fallowfield JA, Iredale JP. Targeted treatments for cirrhosis. Expert Opin Ther Targets. 2004;8:423–35. doi: 10.1517/14728222.8.5.423. [DOI] [PubMed] [Google Scholar]
  • 102.Gressner AM, Weiskirchen R. The tightrope of therapeutic suppression of active transforming growth factor β: high enough to fall deeply. J Hepatol. 2003;39:856–9. doi: 10.1016/s0168-8278(03)00432-x. [DOI] [PubMed] [Google Scholar]
  • 103.Janoschek N, Van de Leur E, Gressner AM, Weiskirchen R. Induction of cell death in activated hepatic stellate cells by targeted gene expression of the thymidine kinase/ganciclovir system. Biochem Biophys Res Commun. 2004;316:1107–15. doi: 10.1016/j.bbrc.2004.02.147. [DOI] [PubMed] [Google Scholar]
  • 104.Yingling JM, Blanchard KL, Sawyer JS. Development of TGF-β signalling inhibitors for cancer therapy. Nat Rev Drug Discov. 2004;3:1011–22. doi: 10.1038/nrd1580. [DOI] [PubMed] [Google Scholar]
  • 105.Lahn M, Kloeker S, Berry BS. TGF-β inhibitors for the treatment of cancer. Expert Opin Investig Drugs. 2005;14:629–43. doi: 10.1517/13543784.14.6.629. [DOI] [PubMed] [Google Scholar]
  • 106.Lee SJ, Kim YG, Kang KW, Kim CW, Kim SG. Effects of colchicine on liver functions of cirrhotic rats; beneficial effects result from stellate cell inactivation and inhibition of TGF-β1 expression. Chem Biol Interact. 2004;147:9–21. doi: 10.1016/j.cbi.2003.10.005. [DOI] [PubMed] [Google Scholar]
  • 107.Fiorucci S, Antonelli E, Rizzo G, Renga B, Mencarelli A, Riccardi L, Orlandi S, Pellicciari R, Morelli A. The nuclear receptor SHP mediates inhibiton of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology. 2004;127:1497–512. doi: 10.1053/j.gastro.2004.08.001. [DOI] [PubMed] [Google Scholar]
  • 108.Raetsch C, Jia JD, Boigk G, Bauer M, Hahn EG, Riecken EO, Schuppan D. Pentoxifylline downregulates profibrogenic cytokines and procollagen I expression in rat secondary biliary fibrosis. Gut. 2002;50:241–7. doi: 10.1136/gut.50.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massague J, Mundy GR, Guise TA. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest. 1999;103:197–206. doi: 10.1172/JCI3523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Okuno M, Akita K, Moriwaki H, Kawada N, Ikeda K, Kaneda K, Suzuki Y, Kojima S. Prevention of rat hepatic fibrosis by the protease inhibitor, camostat mesilate, via reduced generation of active TGF-β. Gastroenterology. 2001;120:1784–800. doi: 10.1053/gast.2001.24832. [DOI] [PubMed] [Google Scholar]
  • 111.Ueki T, Kaneda Y, Tsutsui H, Nakanishi K, Sawa Y, Morishita R, Matsumoto K, Nakamura T, Takahashi H, Okamoto E, Fujimoto J. Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat Med. 1999;5:226–30. doi: 10.1038/5593. [DOI] [PubMed] [Google Scholar]
  • 112.de Bleser PJ, Xu G, Rombouts K, Rogiers V, Geerts A. Glutathione levels discriminate between oxidative stress and transforming growth factor-β signaling in activated rat hepatic stellate cells. J Biol Chem. 1999;274:33881–7. doi: 10.1074/jbc.274.48.33881. [DOI] [PubMed] [Google Scholar]
  • 113.Cui X, Shimizu I, Lu G, Itonaga M, Inoue H, Shono M, Tamaki K, Fukuno H, Ueno H, Ito S. Inhibitory effect of a solubile transforming growth factor β type II receptor on the activation of rat hepatic stellate cells in primary culture. J Hepatol. 2003;39:731–7. doi: 10.1016/s0168-8278(03)00216-2. [DOI] [PubMed] [Google Scholar]
  • 114.Kawada N, Seki S, Inoue M, Kuroki T. Effect of antioxidants, resveratrol, quercetin, and N-acetylcysteine, on the functions of cultured rat heptic stellate cells and Kupffer cells. Hepatology. 1998;27:1265–74. doi: 10.1002/hep.510270512. [DOI] [PubMed] [Google Scholar]
  • 115.Jia JD, Bauer M, Cho JJ, Ruehl M, Milani S, Boigk G, Riecken EO, Schuppan D. Antifibrotic effect of silymarin in rat secondary biliary fibrosis is mediated by downregulation of procollagen α1(I) and TIMP-1. J Hepatol. 2001;35:392–8. doi: 10.1016/s0168-8278(01)00148-9. [DOI] [PubMed] [Google Scholar]
  • 116.Herrmann J, Abriss B, Van de Leur E, Weiskirchen S, Gressner AM, Weiskirchen R. Comparative analysis of adenoviral transgene delivery via tail or portal vein into rat liver. Arch Virol. 2004;149:1611–7. doi: 10.1007/s00705-004-0300-4. [DOI] [PubMed] [Google Scholar]
  • 117.Ueno H, Sakamoto T, Nakamura T, Qi Z, Astuchi N, Takeshita A, Shimizu K, Ohashi H. A soluble transforming growth factor β expressed in muscle prevents liver fibrogenesis and dysfunction in rats. Hum Gene Ther. 2000;11:33–42. doi: 10.1089/10430340050016139. [DOI] [PubMed] [Google Scholar]
  • 118.Borkham-Kamphorst E, Herrmann J, Stoll D, Treptau J, Gressner AM, Weiskirchen R. Dominant negative soluble PDGF-β receptor inhibits hepatic stellate cell activation and attenuates liver fibrosis. Lab Invest. 2004;84:766–77. doi: 10.1038/labinvest.3700094. [DOI] [PubMed] [Google Scholar]
  • 119.Borkham-Kamphorst E, Stoll D, Gressner AM, Weiskirchen R. Inhibitory effect of soluble PDGF-β receptor in culture-activated hepatic stellate cells. Biochem Biophys Res Commun. 2004;317:451–62. doi: 10.1016/j.bbrc.2004.03.064. [DOI] [PubMed] [Google Scholar]
  • 120.Murphy-Ullrich JE, Poczatek M. Activation of latent TGF-β by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev. 2000;11:59–69. doi: 10.1016/s1359-6101(99)00029-5. [DOI] [PubMed] [Google Scholar]
  • 121.Herrmann J, Arias M, Van de Leur E, Gressner AM, Weiskirchen R. CSRP2, TIMP-1, and SM22α promoter fragments direct hepatic stellate cell-specific transgene expression in vitro, but not in vivo. Liver Int. 2004;24:69–79. doi: 10.1111/j.1478-3231.2004.00891.x. [DOI] [PubMed] [Google Scholar]
  • 122.Beljaars L, Olinga P, Molema G, de Bleser P, Geerts A, Groothuis GM, Meijer DK, Poelstra K. Characteristics of the hepatic stellate cell-selective carrier mannose 6-phosphate modified albumin (M6P28-HSA) Liver. 2001;21:320–8. doi: 10.1034/j.1600-0676.2001.210504.x. [DOI] [PubMed] [Google Scholar]
  • 123.Beljaars L, Weert B, Geerts A, Meijer DK, Poelstra K. The preferential homing of a platelet-derived growth factor receptor-recognizing macromolecule to fibroblast-like cells in fibrotic tissue. Biochem Pharmacol. 2003;66:1307–17. doi: 10.1016/s0006-2952(03)00445-3. [DOI] [PubMed] [Google Scholar]
  • 124.Shi Y, Massague J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell. 2003;113:685–700. doi: 10.1016/s0092-8674(03)00432-x. [DOI] [PubMed] [Google Scholar]
  • 125.Neilson EG. Setting a trap for tissue fibrosis. Nat Med. 2005;11:373–4. doi: 10.1038/nm0405-373. [DOI] [PubMed] [Google Scholar]
  • 126.Lin J, Patel SR, Cheng X, Cho EA, Levitan I, Ullenbruch M, Phan SH, Park JM, Dressler GR. Kielin/chordin-like protein, a novel enhancer of BMP signaling, attenuates renal fibrotic disease. Nat Med. 2005;11:387–93. doi: 10.1038/nm1217. [DOI] [PubMed] [Google Scholar]
  • 127.Kondou H, Mushiake S, Etani Y, Miyoshi Y, Michigami T, Ozono K. A blocking peptide for transforming growth factor-β1 activation prevents hepatic fibrosis in vivo. J Hepatol. 2003;39:742–8. doi: 10.1016/s0168-8278(03)00377-5. [DOI] [PubMed] [Google Scholar]
  • 128.Carson M. Ribbons. Meth Enzymol. 1997;277:493–505. [PubMed] [Google Scholar]
  • 129.Hinck AP, Archer SJ, Qian SW, Roberts AB, Sporn MB, Weatherbee JA, Tsang ML, Lucas R, Zhang BL, Wenker J, Torchia DA. Transforming growth factor β1: three-dimensional structure in solution and comparison with the X-ray structure of transforming growth factor β2. Biochemistry. 1996;35:8517–34. doi: 10.1021/bi9604946. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES