Abstract
The release of neurotransmitters at the nerve terminal for neurotransmission, release of insulin from β-cells of the endocrine pancreas for regulating blood glucose levels, the release of growth hormone from GH cells of the pituitary gland to regulate body growth, or the expulsion of zymogen from exocrine pancreas to digest food, are only a few examples of key physiological processes made possible by cell secretion. It comes as no surprise that defects in cell secretion are the cause for numerous diseases, and have been under intense investigation for over half century. Only in the last decade, the molecular machinery and mechanism of cell secretion has become clear. Cell secretion involves the docking and transient fusion of membrane-bound secretory vesicles at the base of plasma membrane structures called porosomes, and the regulated expulsion of intravesicular contents to the outside, by vesicle swelling. The discovery of the porosome in live cells, its morphology and dynamics at nanometer resolution and in real time, its isolation, its composition, and its structural and functional reconstitution in lipid membrane, are complete. The molecular mechanism of secretory vesicle fusion at the base of porosomes, and the regulated expulsion of intravesicular contents during cell secretion, are also resolved. In this minireview, the monumental discovery of the porosome, a new cellular structure at the cell plasma membrane, is briefly discussed.
Keywords: fusion pore/porosome, cell secretion
References
- 1.Hörber JKH, Miles MJ. Scanning probe evolution in biology. Science. 2003;302:1002–5. doi: 10.1126/science.1067410. [DOI] [PubMed] [Google Scholar]
- 2.Anderson LL. Discovery of a new cellular structure - the porosome: elucidation of the molecular mechanism of secretion. Cell Biol Int. 2004;28:3–5. doi: 10.1016/j.cellbi.2003.11.002. [DOI] [PubMed] [Google Scholar]
- 3.Milosacic N, Prodanovic R. Porosome - a new cell structure. Chem Rev (Yugoslavia) 2004;45:102–3. [Google Scholar]
- 4.Zhvania M. The discovery of the molecular mechanism of cellular secretion. J Biol Phys Chem. 2004;4:43–6. [Google Scholar]
- 5.Craciun C. Elucidation of cell secretion: pancreas led the way. Pancreatology. 2004;4:487–9. doi: 10.1159/000080230. [DOI] [PubMed] [Google Scholar]
- 7.Schneider SW, Sritharan KC, Geibel JP, Oberleithner H, Jena BP. Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis. Proc Natl Acad Sci USA. 1997;94:316–21. doi: 10.1073/pnas.94.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Jena BP. Exocytotic fusion: total or transient. Cell Biol Int. 1997;21:257–9. doi: 10.1006/cbir.1997.0159. [DOI] [PubMed] [Google Scholar]
- 9.Jena BP, Schneider SW, Geibel JP, Webster P, Oberleithner H, Sritharan KC. Gi regulation of secretory vesicle swelling examined by atomic force microscopy. Proc Natl Acad Sci USA. 1997;94:13317–22. doi: 10.1073/pnas.94.24.13317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Sritharan KC, Quinn AS, Taatjes DJ, Jena BP. Binding contribution between synaptic vesicle membrane and plasma membrane proteins in neurons: an AFM study. Cell Biol Int. 1998;22:649–55. doi: 10.1006/cbir.1998.0319. [DOI] [PubMed] [Google Scholar]
- 11.Jeong E-H, Webster P, Khuong CQ, Sattar AKMA, Satchi M, Jena BP. The native membrane fusion machinery in cells. Cell Biol Int. 1999;22:657–70. doi: 10.1006/cbir.1999.0394. [DOI] [PubMed] [Google Scholar]
- 12.Jena BP, Cho S-J. AFM in the study of membrane fusion and exocytosis. Methods in Cell Biology, Academic Press. 2002;68:33–48. doi: 10.1016/s0091-679x(02)68003-3. [DOI] [PubMed] [Google Scholar]
- 13.Cho S-J, Jena BP. Number of secretory vesicles remains unchanged following exocytosis. Cell Biol Int. 2002;26:29–33. doi: 10.1006/cbir.2001.0848. [DOI] [PubMed] [Google Scholar]
- 14.Cho S-J, Quinn AS, Stromer MH, Dash S, Cho J, Taatjes DJ, Jena BP. Structure and dynamics of the fusion pore in live cells. Cell Biol Int. 2002;26:35–42. doi: 10.1006/cbir.2001.0849. [DOI] [PubMed] [Google Scholar]
- 15.Cho S-J, Wakade A, Pappas GD, Jena BP. New structure involved in transient membrane fusion and exocytosis. Ann New York Acad Sci. 2002;971:254–6. doi: 10.1111/j.1749-6632.2002.tb04471.x. [DOI] [PubMed] [Google Scholar]
- 16.Cho S-J, Jeftinija K, Glavaski A, Jeftinija S, Jena BP, Anderson LL. Structure and dynamics of the fusion pores in live GH-secreting cells revealed using atomic force microscopy. Endocrinology. 2002;143:1144–8. doi: 10.1210/endo.143.3.8773. [DOI] [PubMed] [Google Scholar]
- 17.Sattar AKM, Boinpally R, Stromer MH, Jena BP. G i3 in pancreatic zymogen granule participates in vesicular fusion. J Biochem. 2002;131:815–20. doi: 10.1093/oxfordjournals.jbchem.a003170. [DOI] [PubMed] [Google Scholar]
- 18.Cho S-J, Abdus Sattar AKM, Jeong EH, Satchi M, Cho J, Dash S, Mayes MS, Stromer MH, Jena BP. Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc Natl Acad Sci USA. 2002;99:4720–4. doi: 10.1073/pnas.072083499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Jena BP. Fusion pore: structure and dynamics. J Endocrinol. 2003;176:169–74. doi: 10.1677/joe.0.1760169. [DOI] [PubMed] [Google Scholar]
- 20.Jena BP. Fusion pores in live cells. News In Physiol Sci. 2002;17:219–22. doi: 10.1152/nips.01394.2002. [DOI] [PubMed] [Google Scholar]
- 21.Cho S-J, Kelly M, Rognlien KT, Cho J-A, Horber JKH, Jena BP. SNAREs in opposing bilayers interact in a circular array to form conducting pores. Biophys J. 2002;83:2522–7. doi: 10.1016/s0006-3495(02)75263-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Jena BP, Cho S-J, Jeremic A, Stromer MH, Abu-Hamdah R. Structure and composition of the fusion pore. Biophys J. 2003;84:1–7. doi: 10.1016/S0006-3495(03)74949-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Jeremic A, Kelly M, Cho S-J, Stromer MH, Jena BP. Reconstituted fusion pore. Biophys J. 2003;85:2035–43. doi: 10.1016/S0006-3495(03)74631-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Abu-Hamdah R, Cho W-J, Cho S-J, Jeremic A, Kelly M, Ilie AE, Jena BP. Regulation of the water channel aquaporin-1: isolation and reconstitution of the regulatory complex. Cell Biol Int. 2004;28:7–17. doi: 10.1016/j.cellbi.2003.11.003. [DOI] [PubMed] [Google Scholar]
- 25.Jeremic A, Kelly M, Cho J-H, Cho S-J, Horber JKH, Jena BP. Calcium drives fusion of SNARE-apposed bilayers. Cell Biol Int. 2004;28:19–31. doi: 10.1016/j.cellbi.2003.11.004. [DOI] [PubMed] [Google Scholar]
- 26.Jeremic A, Cho W-J, Jena BP. Membrane fusion: what may transpire at the atomic level. J Biol Phys Chem. 2004;4:139–42. [Google Scholar]
- 27.Cho W-J, Jeremic A, Rognlien KT, Zhvania MG, Lazrishvili I, Tamar B, Jena BP. Structure, isolation, composition and reconstitution of the neuronal fusion pore. Cell Biol Int. 2004;28:699–708. doi: 10.1016/j.cellbi.2004.07.004. [DOI] [PubMed] [Google Scholar]
- 28.Kelly M, Cho W-J, Jeremic A, Abu-Hamdah R, Jena BP. Vesicle swelling regulates content expulsion during secretion. Cell Biol Int. 2004;28:709–16. doi: 10.1016/j.cellbi.2004.07.005. [DOI] [PubMed] [Google Scholar]
- 29.Jena BP. Molecular machinery and mechanism of cell secretion. Exp Biol Med. 2005;230:307–19. doi: 10.1177/153537020523000504. [DOI] [PubMed] [Google Scholar]
- 30.Cho W-J, Jeremic A, Jena BP. Direct interaction between SNAP-23 and L-type calcium channel. J Cell Mol Med. 2005;9:380–6. doi: 10.1111/j.1582-4934.2005.tb00363.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Kelly M, Abu-Hamdah R, Cho S-J, Ilie AL, Jena BP. Patch clamped single pancreatic zymogen granules: direct measurement of ion channel activities at the granule membrane. Pancreatology. 2005;5:443–9. doi: 10.1159/000086556. [DOI] [PubMed] [Google Scholar]
- 32.Jena BP. Cell secretion and membrane fusion. Domest Anim Endocrinol. 2005;29:145–65. doi: 10.1016/j.domaniend.2005.02.039. [DOI] [PubMed] [Google Scholar]
- 33.Jeremic A, Jena BP, Cho W-J. Involvement of water channels in synaptic vesicle swelling. Exp Biol Med. 2005;230:674–80. doi: 10.1177/153537020523000910. [DOI] [PubMed] [Google Scholar]
- 34.Cho W-J, Jeremic A, Jena BP. Size of supramolecular SNARE complex: membrane-directed self-assembly. J Am Chem Soc. 2005;127:10156–7. doi: 10.1021/ja052442m. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Jeremic A, Quinn AS, Cho W-J, Taatjes DJ, Jena BP. Energy-dependent disassembly of self-assembled SNARE complex: observation at nanometer resolution using atomic force microscopy J Am Chem Soc (published on-line 12/8/05) [DOI] [PubMed]
- 36.Rothman JE. Mechanism of intracellular protein transport. Nature. 1994;372:55–63. doi: 10.1038/372055a0. [DOI] [PubMed] [Google Scholar]
- 37.Weber T, Zemelman BV, McNew JA, Westerman B, Gmachl M, Parlati F, Söllner TH, Rothman JE. SNAREpins: minimal machinery for membrane fusion. Cell. 1998;92:759–72. doi: 10.1016/s0092-8674(00)81404-x. [DOI] [PubMed] [Google Scholar]