Abstract
A dynamic, complex relationship exists between tumor cells and their microenvironment, which plays a pivotal role in cancer progression, yet remains poorly understood. Particularly perplexing is the finding that aggressive melanoma cells express genes associated with multiple cellular phenotypes, in addition to their ability to form vasculogenic-like networks in three-dimensional matrix - called vasculogenic mimicry, which is illustrative of tumor cells plasticity. This study addressed the unique epigenetic effect of the microenvironment of aggressive melanoma cells on the behavior of poorly aggressive melanoma cells exposed to it. The data show significant changes in the global gene expression of the cells exposed to 3-D matrices preconditioned by aggressive melanoma cells, including the acquisition of a vasculogenic cell phenotype, upregulation of ECM remodeling genes, and increased invasive ability - indicative of an epigenetic, microenvironment-induced reprogramming of poorly aggressive melanoma cells. However, this epigenetic effect was completely abrogated when a highly cross-linked collagen matrix was used, which could not be remodeled by the aggressive melanoma cells. These findings offer an unique perspective of the inductive properties associated with an aggressive melanoma microenvironment that might provide new insights into the epigenetic regulation of tumor cell plasticity and differentiation, as well as mechanisms that could be targeted for novel therapeutic strategies.
Keywords: melanoma, plasticity, vasculogenic mimicry, 3-dimensional matrix, epigenetic, tumor microenvironment
References
- 1.Wingo PA, Ries LA, Giovino GA, Miller DS, Rosenberg HM, Shopland DR, Thun MJ, Edwards BK. Annual report to the nation on the status of cancer 1973–1996 with a special section on lung cancer and tobacco smoking. J Natl Cancer Inst. 1999;91:675–90. doi: 10.1093/jnci/91.8.675. [DOI] [PubMed] [Google Scholar]
- 2.Houghton AN, Polsky D. Focus on melanoma. Cancer Cell. 2002;2:275–8. doi: 10.1016/s1535-6108(02)00161-7. [DOI] [PubMed] [Google Scholar]
- 3.Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics 2000 CA. Cancer J Clin. 2000;50:7–33. doi: 10.3322/canjclin.50.1.7. [DOI] [PubMed] [Google Scholar]
- 4.Rigel DS, Carucci JA. Malignant melanoma: Prevention early detection and treatment in the 21st century. CA Cancer J Clin. 2000;50:215–36. doi: 10.3322/canjclin.50.4.215. [DOI] [PubMed] [Google Scholar]
- 5.Chin L, Merlino G, de Pinho RA. Malignant melanoma: modern black plague and genetic black box. Genes Dev. 1998;1222:3467–81. doi: 10.1101/gad.12.22.3467. [DOI] [PubMed] [Google Scholar]
- 6.Zimmerman L, McClean I. Do growth and onset of symptoms of uveal melanoma indicate subclinical metastasis. Ophthalmology. 1984;92:685–91. doi: 10.1016/s0161-6420(84)34243-9. [DOI] [PubMed] [Google Scholar]
- 7.Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, BenDor A, Sampas N, Dougherty E, Wang E, Marincoloa F, Gooden C, Lueders J, Glatfelter A, Pollock P, Capten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature. 200;406:536–40. doi: 10.1038/35020115. [DOI] [PubMed] [Google Scholar]
- 8.Seftor EA, Meltzer PS, Kirschmann DA, Pe'er J, Maniotis AJ, Trent JM, Folberg R, Hendrix MJC. Molecular determinants of human uveal melanoma invasion and metastasis. Clin Exp Metastas. 2002;19:233–46. doi: 10.1023/a:1015591624171. [DOI] [PubMed] [Google Scholar]
- 9.Tschentscher F, Husing J, Holter T, Kruse E, Dresen IG, Jockel K-H, Anastassiour G, Schilling H, Bornfeld N, Horsthemke B, Lohmann DR, Zeschnigk M. Tumor classification based on gene expression profiling shows that uveal melanoma with and without monosomy 3 represent two distinct entities. Cancer Res. 2003;63:2578–84. [PubMed] [Google Scholar]
- 10.Kim CJ, Reintgen DS, Yeatman TJ. The promise of microarray technology in melanoma care. Cancer Control. 2002;91:49–53. doi: 10.1177/107327480200900107. [DOI] [PubMed] [Google Scholar]
- 11.Carr KM, Bittner M, Trent JM. Gene-expression profiling in human cutaneous melanoma. Oncogene. 2003;22:3076–80. doi: 10.1038/sj.onc.1206448. [DOI] [PubMed] [Google Scholar]
- 12.Hendrix MJC, Seftor EA, Hess AR, Seftor REB. Vasculogenic mimicry and tumour-cell plasticity: Lessons from melanoma. Nature Rev Cancer. 2003;3:411–21. doi: 10.1038/nrc1092. [DOI] [PubMed] [Google Scholar]
- 13.Seftor EA, Meltzer PS, Schatteman GC, Gruman LM, Hess AR, Kirschmann DA, Seftor REB, Hendrix MJC. Vascular channel formation by human melanoma cells in Vivo and in vitro. Am J Pathol. 1999;155:739–52. doi: 10.1016/S0002-9440(10)65173-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Seftor EA, Meltzer PS, Schatteman GC, Gruman LM, Hess AR, Kirschmann DA, Seftor REB, Hendrix MJC. Expression of multiple molecular phenotypes by aggressive melanoma tumor cells: role in vasculogenic mimicry. Crit Rev Oncology Hematol. 2002;44:17–27. doi: 10.1016/s1040-8428(01)00199-8. [DOI] [PubMed] [Google Scholar]
- 15.Makitie T, Summanen P, Tarkkanen A, Kivela T. Microvascular loops and networks as prognostic indicators in choroidal and ciliary body melanomas. J Natl Cancer Inst. 1999;91:359–67. doi: 10.1093/jnci/91.4.359. [DOI] [PubMed] [Google Scholar]
- 16.Thies A, Mangold U, Moll I, Schumacher U. PAS-positive loops and networks as a prognostic indicatorin cutaneous malignant melanoma. J Pathol. 2001;195:537–42. doi: 10.1002/path.988. [DOI] [PubMed] [Google Scholar]
- 17.Warso MA, Maniotis AJ, Chen X, Majumdar D, Patel MK, Shikaitis A, Das Gupta TK, Folberg R. Prognostic significance of periodic acid-Schiff-positive patterns in primary cutaneous melanoma. Clin Cancer Res. 2001;7:473–7. [PubMed] [Google Scholar]
- 18.Shirakawa K, Kobayashi H, Heike Y, Kawamoto S, Brechbiel MW, Kasumi F, Iwanaga T, Konishi F, Terada M, Wakasugi H. Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenografts. Cancer Res. 2002;62:560–6. [PubMed] [Google Scholar]
- 19.Maniotis AJ, Chen X, Garcia C, de Christopher P. Wu D, Pe'er J, Folberg R. Control of melanoma morphogenesis endothelial survival and perfusion by extracellular matrix. Lab Invest. 2002;82:1031–43. doi: 10.1097/01.lab.0000024362.12721.67. [DOI] [PubMed] [Google Scholar]
- 20.Ruf W, Seftor EA, Petrovan R, Weiss RM, Gruman LM, Margaryan NV, Seftor REB, Miyagi Y, Hendrix MJC. Differential role of tissue factor pathway inhibitor-1 and 2 TEPI-1 and 2 in melanoma vasculogenic mimicry. Cancer Res. 2003;63:5381–9. [PubMed] [Google Scholar]
- 21.Clarijs R, Otte-Holler I, Ruiter DJ, de Waal RMW. Presence of a fluid-conducting meshwork in xenografted cutaneous and primary human uveal melanoma. Inv Ophthalmol Vis Sci. 2002;43:912–18. [PubMed] [Google Scholar]
- 22.Hendrix MJC, Seftor REB, Seftor EA, Gruman LM, Lee LML, Nickoloff BJ, Miele L, Sheriff DD, Schatteman GC. Transendothelial function of human metastatic melanoma cells: role of the microenvirnonment in cell-fate determination. Cancer Res. 2002;62:665–8. [PubMed] [Google Scholar]
- 23.Ryback SM, Sanovich E, Hollingshead MG, Borgel SD, Newton DL, Melillo G, Kong D, Kaur G, Sausville EA. Vasocrine” formation of tumor cell-lined vascular spaces: Implications for rationale design of antiangiogenic therapies. Cancer Res. 2003;63:2812–19. [PubMed] [Google Scholar]
- 24.van der Schaft DWJ, Seftor REB, Seftor EA, Hess AR, Gruman LM, Kirschmann DA, Yokoyama Y, Griffiown AW, Hendrix MJC. Effects of angiogenesis inhibitors on vascular network formation by human endothelial and melanoma cells. J Natl Cancer Instit. 2004;9619:1473–77. doi: 10.1093/jnci/djh267. [DOI] [PubMed] [Google Scholar]
- 25.Seftor EA, Meltzer PS, Kirschmann DA, Seftor REB, Hendrix MJC. The epigenetic influence of the tumor microenvironment on melanoma plasticity. In: Kaiser HE, editor; Meadows GG, editor. Integration/interaction of oncologic growth. Vol. 15. Springer; 2005. pp. 47–63. . series editor. Cancer growth and progression, vol. . In: , editor, . Dordrecht, The Netherlands: [Google Scholar]
- 26.Hendrix MJC, Seftor EA, Seftor REB, Gardner LM, Boldt HC, Meyer M, Pe'er J, Folberg R. Biologic determinants of uveal filaments as predictive markers. Lab Investig. 1998;782:153–63. [PubMed] [Google Scholar]
- 27.Allander SV, Nupponen NN, Ringner M, Hostetter G, Maher GW, Goldberger N, Chen Y, Carpten J, Elkahloun AG, Meltzer PS. Gastointestinal stromal tumors with KIT mutations exhibit a remarkably homogeneous gene expression profile. Cancer Res. 2001;61:8624–8. [PubMed] [Google Scholar]
- 28.Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature. 2001;411:35–9. doi: 10.1038/35077241. [DOI] [PubMed] [Google Scholar]
- 29.Bissell MJ, Radisky D. Putting tumours in context. Nature Rev Cancer. 2001;1:46–54. doi: 10.1038/35094059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev Cancer. 2002;2:161–74. doi: 10.1038/nrc745. [DOI] [PubMed] [Google Scholar]
- 31.Seftor REB, Seftor EA, Kirschmann DA, Hendrix MJC. Targeting the tumor microenvironment with chemically modified tetracyclines: inhibition of laminin 5 γ2 chain promigratory fragments and vasculogenic mimicry. Mol Cancer Therapeut. 2002;1:1173–9. [PubMed] [Google Scholar]
- 32.Takeuchi H, Kuo C, Morton DL, Wang H-J, Hoon DSB. Expression of differentiation melanoma-associated antigen genes is associated with favorable disease outcome in advanced-stage melanomas. Cancer Res. 2003;63:441–8. [PubMed] [Google Scholar]
- 33.Sheffield MV, Yee H, Dorvault CC, Weilbaecher KN, Eltoum IA, Siegal GP, Fisher DE, Chhieng DC. Comparison of five antibodies as markers in the diagnosis of melanoma in cytologic preparations. Am J Pathol. 2002;1186:930–6. doi: 10.1309/EWK9-LUPR-6BC5-1GXV. [DOI] [PubMed] [Google Scholar]
- 34.Du J, Miller AJ, Widlund HR, Horstmann MA, Ramaswamy S, Fisher DE. MLANA/MARTI and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am J Pathol. 2003;1631:333–43. doi: 10.1016/S0002-9440(10)63657-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Shih I-M, Speicher D, Hsu M-Y, Levine E, Herlyn M. Melanoma cell-cell interactions are mediated through heterophilic Mel-CAM/ligand adhesion. Cancer Res. 1997;57:3835–40. [PubMed] [Google Scholar]
- 36.Tomanek RJ. Assembly of the vasculature and its regulation. Birkhauser; 2002. . Boston: [Google Scholar]
- 37.Risau W. Mechanisms of angiogenesis. Nature. 1997;386:671–4. doi: 10.1038/386671a0. [DOI] [PubMed] [Google Scholar]
- 38.Carmeliet P. 2000. pp. 389–95. Mechanisms of angiogenesis and arteriogenesis Nature ; Med 6: [DOI] [PubMed]
- 39.Hynes RO. Integrins: bidirectional allosteric signaling machines. Cell. 2002;110:673–7. doi: 10.1016/s0092-8674(02)00971-6. [DOI] [PubMed] [Google Scholar]
- 40.Hess AR, Seftor EA, Gardner LMG, Carles-Kinch K, Schneider GB, Seftor REB, Kinch MS, Hendrix MJC. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase Eck/EphA2. Cancer Res. 2001;61:3250–5. [PubMed] [Google Scholar]
- 41.Hendrix MJC, Seftor EA, Meltzer PS, Gardner LMG, Hess AR, Kirschmann DA, Schatteman GC, Seftor REB. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: Role in vasculogenic mimicry. Proc Natl Acad Sci USA. 2001;98:8018–23. doi: 10.1073/pnas.131209798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Look AT, Ashmun RA, Shapiro LH, Peiper SC. Human myeloid plasma membrane glycoprotein CD13 gp150 is identical to aminopeptidase. J Clin Invest. 1989;83:1299–1307. doi: 10.1172/JCI114015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Ashmun RA, Look AT. Metalloprotease activity of CD13/aminopeptidase N on the surface of human myeloid cells. Blood. 1990;75:462–9. [PubMed] [Google Scholar]
- 44.Bhagwat SV, Petrovic N, Okamoto Y, Shapiro LH. The angiogenic regulator CD13/APN is a transcriptional target of Ras signaling pathways in endothelial morphogenesis. Blood. 2003;101:1818–26. doi: 10.1182/blood-2002-05-1422. [DOI] [PubMed] [Google Scholar]
- 45.Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 2000;60:722–7. [PMC free article] [PubMed] [Google Scholar]
- 46.Russell L, Forsdyke DR. A human putative lymphocyte GO/G1 switch gene containing a CpG-rich island encodes a small basic protein with the potential to be phosphorylated DNA. Cell Biol. 1991;108:581–91. doi: 10.1089/dna.1991.10.581. [DOI] [PubMed] [Google Scholar]
- 47.Bachner D, Ahrens M, Schroder D, Hoffmann A, Lauber J, Betat N, Steinert P, Flohe L, Gross G. Bmp-2 downstream targets in mesenchymal development identified by subtractive cloning from recombinant mesenchymal progenitors (C3H10T1/2) Dev Dyn. 1998;213:398–11. doi: 10.1002/(SICI)1097-0177(199812)213:4<398::AID-AJA5>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
- 48.Chen Y, Medvedev A, Ruzanov P, Marvin KW, Jetten AM. cDNA cloning genomic structure and chromosome mapping of the human epithelial membrane protein CL-20 gene EMP1 a member of the PMP22 family. Genomics. 1997;411:40–8. doi: 10.1006/geno.1997.4524. [DOI] [PubMed] [Google Scholar]
- 49.Ben-Porath I, Kozak CA, Benvenisty N. Chromosomal mapping of Tmp (Emp1), Xmp (Emp2), and Ymp (Emp3), genes encoding membrane proteins related to Pmp22. Genomics. 1998;49:443–7. doi: 10.1006/geno.1998.5238. [DOI] [PubMed] [Google Scholar]
- 50.Wulf P, Suter U. Embryonic expression of epithelial membrane protein 1 in early neurons. Brain Res Dev Brain Res. 1999;1162:169–80. doi: 10.1016/s0165-3806(99)00092-9. [DOI] [PubMed] [Google Scholar]
- 51.Hendrix MJC, Seftor EA, Chu Y-W, Seftor REB, Nagle RB, McDaniel KM, Leong SPL, Yohem KH, Leibovitz AM, Meyskens FL, Jr, Conaway D, Welch DR, Liotta LA, Stetler-Stevenson WG. Coexpression of vimentin and keratins by human melanoma tumor cells: correlations with invasive and metastatic potential. J Natl Cancer Inst. 1992;84:165–74. doi: 10.1093/jnci/84.3.165. [DOI] [PubMed] [Google Scholar]
- 52.Miettinen M, Fransella K. Immunohistochemical spectrum of malignant melanoma: the common presence of keratins. Lab Invest. 1989;61:623–8. [PubMed] [Google Scholar]
- 53.Zarbo RJ, Gown AM, Nagle RB, Visscher DW, Crissman JD. Anomalous cytokeratin expression in malignant melanoma: one-and two-dimensional western blot analysis and immunohistochemical survey of 100 melanomas. Mod Pathol. 1990;3:494–501. [PubMed] [Google Scholar]
- 54.Stocum DL. A tail of transdifferentiation. Science. 2002;298:1901–3. doi: 10.1126/science.1079853. [DOI] [PubMed] [Google Scholar]
- 55.Blau HM. A twist of fate. Nature. 2002;419:437. doi: 10.1038/419437a. [DOI] [PubMed] [Google Scholar]
- 56.Echeverri K, Tanaka EM. Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science. 2002;298:1993–6. doi: 10.1126/science.1077804. [DOI] [PubMed] [Google Scholar]
- 57.Klausner RD. The fabric of cancer cell biology - Weaving together the strands. Cancer Cell. 2002;1:3–10. doi: 10.1016/s1535-6108(02)00020-x. [DOI] [PubMed] [Google Scholar]
- 58.Hay ED. Cell biology of extracellular matrix. 2nd. Plenum Press; 1991. New York; [Google Scholar]
- 59.Boudreau N, Bissell MJ. Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr Opin Cell Biol. 1998;105:640–6. doi: 10.1016/s0955-0674(98)80040-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Van Kempen LCL, Rhee J-S, de Hne K, Lee J, Edwards DR, Coussens LM. Epithelial carcinogenesis: dynamic interplay between neoplastic cells and their microenvironment. Differentiation. 2002;70:610–23. doi: 10.1046/j.1432-0436.2002.700914.x. [DOI] [PubMed] [Google Scholar]
- 61.Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst. 1997;8917:1260–70. doi: 10.1093/jnci/89.17.1260. [DOI] [PubMed] [Google Scholar]
- 62.Sottile J, Hocking DC. Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell. 2002;13:3546–59. doi: 10.1091/mbc.E02-01-0048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Clark EA, Golub TR, Lander ES, Hynes RO. Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 2000;406:532–5. doi: 10.1038/35020106. [DOI] [PubMed] [Google Scholar]
- 64.Ruoslahti E. Fibronectin and its integrin receptors in cancer. Adv Cancer Res. 1999;76:1–20. doi: 10.1016/s0065-230x(08)60772-1. [DOI] [PubMed] [Google Scholar]
- 65.Tremble PM, Damsky CH, Werb Z. Fibronectin fragments but not intact fibronectin signalling through the fibronectin receptor induce metalloproteinase gene expression in fibroblasts. Matrix Suppl. 1992;1:212–14. [PubMed] [Google Scholar]
- 66.Seftor REB, Seftor EA, Gehlsen KR, Stetler-Stevenson WG, Brown P, Ruoslahti E, Hendrix MJC. Role of the αvβ3 receptor in tumor cell invasion. Proc Natl Acad Sci USA. 1992;895:1557–61. doi: 10.1073/pnas.89.5.1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Montgomery AM, de Clerck YA, Langley KE, Reisfeld RA, Mueller BM. Melanoma-mediated dissolution of extracellular matrix: contribution of urokinase-dependent and metalloproteinase-dependent proteolytic pathways. Cancer Res. 1993;533:693–700. [PubMed] [Google Scholar]
- 68.Kirschmann DA, Seftor EA, Fong SFT, Nieva DRC, Sullivan CM, Edwards EM, Sommer P, Csiszar K, Hendrix MJC. A molecular role for lysyl oxidase in breast cancer invasion. Cancer Res. 2002;62:4478–83. [PubMed] [Google Scholar]
- 69.Akiri G, Sabo E, Dafni H, Vadasc A, Kartvelishvily T, Gan N, Kessler O, Cohen T, Resnick M, Meeman M, Neufeld G. Lysyl oxidase-related protein-1 promotes tumor fibrosis and tumor progression in vivo. Cancer Res. 2003;63:1657–66. [PubMed] [Google Scholar]
- 70.Seiki M. The cell surface: the stage for matrix metalloproteinase regulation of migration. Curr Opin Cell Biol. 2002;14:624–32. doi: 10.1016/s0955-0674(02)00363-0. [DOI] [PubMed] [Google Scholar]
- 71.Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ. Regulation of cell invasion and morphogenesis in a three-dimensional type collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol. 2000;1496:1309–23. doi: 10.1083/jcb.149.6.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Aimes RT, Quigley JP. Matrix metalloproteinase-2 is an interstitial collagenase. J Biol Chem. 1995;270:5872–6. doi: 10.1074/jbc.270.11.5872. [DOI] [PubMed] [Google Scholar]
- 73.Seftor REB, Seftor EA, Hendrix MJC. Molecular roles for integrins in human melanoma invasion. Cancer Metast Rev. 1999;18:359–75. doi: 10.1023/a:1006317125454. [DOI] [PubMed] [Google Scholar]
- 74.Seftor REB, Seftor EA, Koshikawa N, Meltzer PS, Gardner LMG, Bilban M, Stetler-Stevenson WG, Quaranta V, Hendrix MJC. Cooperative interactions of laminin 5γ2 chain matrix metalloproteinase-2 and membrane type-1 matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res. 2001;61:6322–7. [PubMed] [Google Scholar]
- 75.Malinda KM, Kleinman HK. The laminins. Int J Biochem Cell Biol. 1996;28:957–9. doi: 10.1016/1357-2725(96)00042-8. [DOI] [PubMed] [Google Scholar]
- 76.Colagnato H, Yurchenco PD. Form and function: the laminin family of heterotrimers. Dev Dyn. 2000;218:213–34. doi: 10.1002/(SICI)1097-0177(200006)218:2<213::AID-DVDY1>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
- 77.Kalluri R. Basement membranes: structure assembly and role in tumour angiogenesis. Nature Rev Cancer. 2003;3:422–33. doi: 10.1038/nrc1094. [DOI] [PubMed] [Google Scholar]
- 78.Malinda KM, Nomizu M, Chung M, de Lgado M, Kuratomi Y, Yamada Y, Kleinman HK, Ponce ML. Identification of laminin α1 and β1 chain peptides active for endothelial cell adhesion tube formation and aortic sprouting. FASEB J. 1999;13:53–62. [PubMed] [Google Scholar]
- 79.Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V. Role of cell surface metalloprotease MTI-MMP in epithelial cell migration over laminin-5. J Cell Biol. 2000;148:615–24. doi: 10.1083/jcb.148.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG. Quaranta V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science. 1997;277:225–8. doi: 10.1126/science.277.5323.225. , and. [DOI] [PubMed] [Google Scholar]
- 81.Hynes RO, Bader BL, Hodivala-Diike K. Integrins in vascular development. Braz J Med Biol Res. 1999;32:501–10. doi: 10.1590/s0100-879x1999000500002. [DOI] [PubMed] [Google Scholar]
- 82.Giordano FJ, Johnson RS. Angiogenesis: the role of the microenvironment in flipping the switch. Curr Opin Genetics Dev. 2001;11:35–40. doi: 10.1016/s0959-437x(00)00153-2. [DOI] [PubMed] [Google Scholar]
- 83.Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D. Matrix metalloproteinase-9 triggers and angiogenic switch during carcinogenesis. Nature Cell Biol. 2000;2:737–44. doi: 10.1038/35036374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Hendrix MJC, Seftor EA, Seftor REB, Kirschmann DA, Gardner LM, Boldt HC, Meyer M, Pe'er J, Folberg R. Regulation of uveal melanoma interconverted phenotype by hepatocyte growth factor/scatter factor. Am J Pathol. 1998;152:855–63. [PMC free article] [PubMed] [Google Scholar]
- 85.Yu Y, Merlino G. Constitutive c-Met signaling through a nonautocrine mechanism promotes metastasis in a transgenic transplantation model. Cancer Res. 2002;62:2951–56. [PubMed] [Google Scholar]
- 86.Jeffers M, Rong S, van de Woude GF. Hepatocyte growth factor/scatter factor-Met signaling in tumorigenicity and invasion/metastasis. J Mol Med. 1996;74:505–13. doi: 10.1007/BF00204976. [DOI] [PubMed] [Google Scholar]
- 87.Hammond DE, Urbe S, van de Woude GF, Clague MJ. Down-regulation of MET the receptor for hepatocyte growth factor. Oncogene. 2001;2022:2761–70. doi: 10.1038/sj.onc.1204475. [DOI] [PubMed] [Google Scholar]
- 88.Cao B, Su UY, Oskarsson M, Zhao P, Kort EJ, Fisher RJ, Wang L-M, van de Woude GF. Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor HGF/SF display antitumor activity in animal models. Proc Natl Acad Sci USA. 2001;9813:7443–8. doi: 10.1073/pnas.131200498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Sahai E, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signaling and extracellular proteolysis. Nature Cell Biol. 2003;58:711–19. doi: 10.1038/ncb1019. [DOI] [PubMed] [Google Scholar]
- 90.Chen H, Bernstein BW, Bamburg JR. Regulating actinfilament dynamics. in vivo. Trends Biochem Sci. 2000;251:19–23. doi: 10.1016/s0968-0004(99)01511-x. [DOI] [PubMed] [Google Scholar]
- 91.Shiomi T, Okada Y. MTI-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metast Rev. 2003;222–3:145–52. doi: 10.1023/a:1023039230052. [DOI] [PubMed] [Google Scholar]
- 92.Marken JS, Schieven GL, Hellstrom I, Hellstrom NK, Aruffo A. Cloning and expression of the tumor-associated antigen L6. Proc Natl Acad Sci USA. 1992;89:3503–7. doi: 10.1073/pnas.89.8.3503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Wei Y, Eble JA, Wang Z, Kreidberg JA, Chapman HA. Urokinase receptors promote β1 integrin fuction through interactions with integrin α3β1. Mol Biol Cell. 2001;12:2975–86. doi: 10.1091/mbc.12.10.2975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Blasi F, Carmeliet P. uPAR: a versatile signaling orchestrator. Nature Rev Mol Cell Biol. 2002;3:932–43. doi: 10.1038/nrm977. [DOI] [PubMed] [Google Scholar]
- 95.Liu D, Aguirre Ghiso JA, Estrada Y, Ossowski L. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell. 2002;1:445–5. doi: 10.1016/s1535-6108(02)00072-7. [DOI] [PubMed] [Google Scholar]
- 96.Babic AM, Kireeva ML, Kolesnikova TV, Lau LF. CYR61, a product of growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci USA. 1998;95:6355–60. doi: 10.1073/pnas.95.11.6355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Modi WS, Chen Z-Q. Localization of human CXC chemokine subfamily on the long arm of chromosome 4 using radiation hybrids. Genomics. 1998;47:136–6. doi: 10.1006/geno.1997.5100. [DOI] [PubMed] [Google Scholar]
- 98.Vidal-Vanaclocha F, Fantuzzi G, Mendoza L, Fuentes AM, Anasagasti MJ, Martin J, Carrascal T, Walsh P, Reznikov LL, Kimm S-H, Novick D, Rubinstein M, Dinarello CA. IL-18 regulates IL-1-β-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. Proc Natl Acad Sci USA. 2000;97:734–9. doi: 10.1073/pnas.97.2.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Metcalf D. The granulocyte-macrophage colony-stimulating factors. Science. 1985;229:16–22. doi: 10.1126/science.2990035. [DOI] [PubMed] [Google Scholar]
- 100.Nagata S, Tsuchiya M, Asano S, Kaziro Y, Yamazaki T, Yamamoto O, Hirata Y, Kubota N, Oheda M, Nomura H, Ono M. Molecular cloning and expression of cDNA for the human granulocyte colony-stimulating factor. Nature. 1986;319:415–18. doi: 10.1038/319415a0. [DOI] [PubMed] [Google Scholar]
- 101.Mellor SL, Cranfield M, Ries R, Pedersen J, Cancilla B, de Kretser D, Groome NP, Mason AJ, Risbridger GP. Localization of activin βA-βB- and βC-subunits in human prostate and evidence for formation of new activin heterodimers of βC-subunit. J Clin Endocr Metab. 2000;85:4851–8. doi: 10.1210/jcem.85.12.7052. [DOI] [PubMed] [Google Scholar]
- 102.Richmond A, Balentien E, Thomas HG, Flaggs G, Baron DE, Spiess J, Bordoni R, Francke U, de Rynck R. Molecular characterization and chromosomal mapping of melanoma growth stimulatory activity a growth factor structurally related to βthromboglobulin. EMBO J. 1988;7:2025–33. doi: 10.1002/j.1460-2075.1988.tb03042.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Franze A, Archidiacono N, Rocchi M, Marino M, Grimaldi G. Isolation and expression analysis of a human zinc finger gene ZNF41 located on the short arm of the X chromosome. Genomics. 1991;9:728–36. doi: 10.1016/0888-7543(91)90367-n. [DOI] [PubMed] [Google Scholar]
- 104.Von Magliano M, Von Lauro R, Zannini M. Pax 8 has a key role in thyroid cell differentiation. Proc Natl Acad Sci USA. 2000;9724:144–9. doi: 10.1073/pnas.240336397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol. 1992;22:1–21. doi: 10.3109/10408449209145319. [DOI] [PubMed] [Google Scholar]
- 106.Chen Z, Zhang K, Zhang X, Yuan XH, Yuan Z, Jin L, Xiong M. Comparison of gene expression between metastatic derivatives and their poorly metastatic parental cells implicates crucial tumor-environment interaction in metastasis of head and neck squamous cell carcinoma. Clin Exp Metastas. 2003;20:335–42. doi: 10.1023/a:1024039802134. [DOI] [PubMed] [Google Scholar]
- 107.Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, de Mbo M, Boettiger D, Hammer DA, Weaver VM. Tensional homeostasis and athe malignant phenotype. Cancer Cell. 2005;8:241–54. doi: 10.1016/j.ccr.2005.08.010. [DOI] [PubMed] [Google Scholar]
- 108.Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nature Genet. 2003;33:49–54. doi: 10.1038/ng1060. [DOI] [PubMed] [Google Scholar]
- 109.Bernards R, Weinberg RA. A progression puzzle. Nature. 2002;418:823. doi: 10.1038/418823a. [DOI] [PubMed] [Google Scholar]
- 110.LaBarge MA, Blau HM. Biological progression from adult bone marrow to mononucleate muscle fiber in response to injury. Cell. 2002;111:589–601. doi: 10.1016/s0092-8674(02)01078-4. [DOI] [PubMed] [Google Scholar]
- 111.Kon K, Fujirawa T. Transformation of fibroblasts into endothelial cells during angiogenesis. Cell Tissue Res. 1994;278:625–8. doi: 10.1007/BF00331383. [DOI] [PubMed] [Google Scholar]
- 112.Condorelli G, Borello U, de Angelis L, Latronico M, Sirabella D, Coletta M, Galli R, Balconi G, Follenzi A, Frati G, Cusella De Angelis MG, Bioglio L, Amuchastegui S, Adorini L, Naldini L, Vescovi A, de Jana E, Cossu G. Cardiomyocytes induce endothelial cells to transdifferentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci USA. 2001;98:10733–8. doi: 10.1073/pnas.191217898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Seftor EA, Brown KM, Chin L, Kirschmann DA, Wheaton WW, Protopopov A, Feng B, Balagurunathan Y, Trent JM, Nickoloff BJ, Seftor REB, Hendrix MJC. Epigenetic transdifferentiation of normal melanocytes by a metastatic melanoma microenvironment. Cancer Res. 2005;65:10164–9. doi: 10.1158/0008-5472.CAN-05-2497. [DOI] [PubMed] [Google Scholar]
- 114.Nickoloff BJ, Foreman KE. Etiology and pathogenesis of Kaposi's sarcoma. Recent Results Cancer Res. 2002;160:332–42. [PubMed] [Google Scholar]
- 115.Wang H-W, Trotter MWB, Lagos D, Bourboulia D, Henderson S, Makinen T, Elliman S, Flanagan AM, Alitalo K, Boshoff C. Kaposi sarcoma herpesvirus induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nature Genetics. 2004;367:687–93. doi: 10.1038/ng1384. [DOI] [PubMed] [Google Scholar]
- 116.Grossman D, Altieri DC. Drug resistance in melanoma: mechanisms apoptosis and new potential therapeutic targets. Cancer Metast Rev. 2001;20:3–11. doi: 10.1023/a:1013123532723. [DOI] [PubMed] [Google Scholar]
- 117.Sherman-Baust CA, Weeraratna AT, Rangel LBA, Pizer ES, Cho KR, Schwatz DR, Shock T, Morin PJ. Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Cell. 2003;3:377–86. doi: 10.1016/s1535-6108(03)00058-8. [DOI] [PubMed] [Google Scholar]
- 118.Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 2000;60:2497–503. [PubMed] [Google Scholar]
- 119.Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002;295:2387–92. doi: 10.1126/science.1067100. [DOI] [PubMed] [Google Scholar]